Metamath Proof Explorer


Theorem resresdm

Description: A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020)

Ref Expression
Assertion resresdm F = E A F = E dom F

Proof

Step Hyp Ref Expression
1 id F = E A F = E A
2 dmeq F = E A dom F = dom E A
3 2 reseq2d F = E A E dom F = E dom E A
4 resdmres E dom E A = E A
5 3 4 eqtr2di F = E A E A = E dom F
6 1 5 eqtrd F = E A F = E dom F