Metamath Proof Explorer


Theorem resrhm2b

Description: Restriction of the codomain of a (ring) homomorphism. resghm2b analog. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypothesis resrhm2b.u U = T 𝑠 X
Assertion resrhm2b X SubRing T ran F X F S RingHom T F S RingHom U

Proof

Step Hyp Ref Expression
1 resrhm2b.u U = T 𝑠 X
2 subrgsubg X SubRing T X SubGrp T
3 1 resghm2b X SubGrp T ran F X F S GrpHom T F S GrpHom U
4 2 3 sylan X SubRing T ran F X F S GrpHom T F S GrpHom U
5 eqid mulGrp T = mulGrp T
6 5 subrgsubm X SubRing T X SubMnd mulGrp T
7 eqid mulGrp T 𝑠 X = mulGrp T 𝑠 X
8 7 resmhm2b X SubMnd mulGrp T ran F X F mulGrp S MndHom mulGrp T F mulGrp S MndHom mulGrp T 𝑠 X
9 6 8 sylan X SubRing T ran F X F mulGrp S MndHom mulGrp T F mulGrp S MndHom mulGrp T 𝑠 X
10 subrgrcl X SubRing T T Ring
11 1 5 mgpress T Ring X SubRing T mulGrp T 𝑠 X = mulGrp U
12 10 11 mpancom X SubRing T mulGrp T 𝑠 X = mulGrp U
13 12 adantr X SubRing T ran F X mulGrp T 𝑠 X = mulGrp U
14 13 oveq2d X SubRing T ran F X mulGrp S MndHom mulGrp T 𝑠 X = mulGrp S MndHom mulGrp U
15 14 eleq2d X SubRing T ran F X F mulGrp S MndHom mulGrp T 𝑠 X F mulGrp S MndHom mulGrp U
16 9 15 bitrd X SubRing T ran F X F mulGrp S MndHom mulGrp T F mulGrp S MndHom mulGrp U
17 4 16 anbi12d X SubRing T ran F X F S GrpHom T F mulGrp S MndHom mulGrp T F S GrpHom U F mulGrp S MndHom mulGrp U
18 17 anbi2d X SubRing T ran F X S Ring F S GrpHom T F mulGrp S MndHom mulGrp T S Ring F S GrpHom U F mulGrp S MndHom mulGrp U
19 10 adantr X SubRing T ran F X T Ring
20 19 biantrud X SubRing T ran F X S Ring S Ring T Ring
21 20 anbi1d X SubRing T ran F X S Ring F S GrpHom T F mulGrp S MndHom mulGrp T S Ring T Ring F S GrpHom T F mulGrp S MndHom mulGrp T
22 1 subrgring X SubRing T U Ring
23 22 adantr X SubRing T ran F X U Ring
24 23 biantrud X SubRing T ran F X S Ring S Ring U Ring
25 24 anbi1d X SubRing T ran F X S Ring F S GrpHom U F mulGrp S MndHom mulGrp U S Ring U Ring F S GrpHom U F mulGrp S MndHom mulGrp U
26 18 21 25 3bitr3d X SubRing T ran F X S Ring T Ring F S GrpHom T F mulGrp S MndHom mulGrp T S Ring U Ring F S GrpHom U F mulGrp S MndHom mulGrp U
27 eqid mulGrp S = mulGrp S
28 27 5 isrhm F S RingHom T S Ring T Ring F S GrpHom T F mulGrp S MndHom mulGrp T
29 eqid mulGrp U = mulGrp U
30 27 29 isrhm F S RingHom U S Ring U Ring F S GrpHom U F mulGrp S MndHom mulGrp U
31 26 28 30 3bitr4g X SubRing T ran F X F S RingHom T F S RingHom U