Metamath Proof Explorer


Theorem ress0

Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion ress0 𝑠 A =

Proof

Step Hyp Ref Expression
1 0ss A
2 0ex V
3 eqid 𝑠 A = 𝑠 A
4 base0 = Base
5 3 4 ressid2 A V A V 𝑠 A =
6 1 2 5 mp3an12 A V 𝑠 A =
7 reldmress Rel dom 𝑠
8 7 ovprc2 ¬ A V 𝑠 A =
9 6 8 pm2.61i 𝑠 A =