Metamath Proof Explorer


Theorem ress0g

Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 . (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Hypotheses ress0g.s S = R 𝑠 A
ress0g.b B = Base R
ress0g.0 0 ˙ = 0 R
Assertion ress0g R Mnd 0 ˙ A A B 0 ˙ = 0 S

Proof

Step Hyp Ref Expression
1 ress0g.s S = R 𝑠 A
2 ress0g.b B = Base R
3 ress0g.0 0 ˙ = 0 R
4 1 2 ressbas2 A B A = Base S
5 4 3ad2ant3 R Mnd 0 ˙ A A B A = Base S
6 simp3 R Mnd 0 ˙ A A B A B
7 2 fvexi B V
8 ssexg A B B V A V
9 6 7 8 sylancl R Mnd 0 ˙ A A B A V
10 eqid + R = + R
11 1 10 ressplusg A V + R = + S
12 9 11 syl R Mnd 0 ˙ A A B + R = + S
13 simp2 R Mnd 0 ˙ A A B 0 ˙ A
14 simpl1 R Mnd 0 ˙ A A B x A R Mnd
15 6 sselda R Mnd 0 ˙ A A B x A x B
16 2 10 3 mndlid R Mnd x B 0 ˙ + R x = x
17 14 15 16 syl2anc R Mnd 0 ˙ A A B x A 0 ˙ + R x = x
18 2 10 3 mndrid R Mnd x B x + R 0 ˙ = x
19 14 15 18 syl2anc R Mnd 0 ˙ A A B x A x + R 0 ˙ = x
20 5 12 13 17 19 grpidd R Mnd 0 ˙ A A B 0 ˙ = 0 S