Database
BASIC STRUCTURES
Extensible structures
Basic definitions
Base set restrictions
ressabs
Next ⟩
wunress
Metamath Proof Explorer
Ascii
Unicode
Theorem
ressabs
Description:
Restriction absorption law.
(Contributed by
Mario Carneiro
, 12-Jun-2015)
Ref
Expression
Assertion
ressabs
⊢
A
∈
X
∧
B
⊆
A
→
W
↾
𝑠
A
↾
𝑠
B
=
W
↾
𝑠
B
Proof
Step
Hyp
Ref
Expression
1
ssexg
⊢
B
⊆
A
∧
A
∈
X
→
B
∈
V
2
1
ancoms
⊢
A
∈
X
∧
B
⊆
A
→
B
∈
V
3
ressress
⊢
A
∈
X
∧
B
∈
V
→
W
↾
𝑠
A
↾
𝑠
B
=
W
↾
𝑠
A
∩
B
4
2
3
syldan
⊢
A
∈
X
∧
B
⊆
A
→
W
↾
𝑠
A
↾
𝑠
B
=
W
↾
𝑠
A
∩
B
5
simpr
⊢
A
∈
X
∧
B
⊆
A
→
B
⊆
A
6
sseqin2
⊢
B
⊆
A
↔
A
∩
B
=
B
7
5
6
sylib
⊢
A
∈
X
∧
B
⊆
A
→
A
∩
B
=
B
8
7
oveq2d
⊢
A
∈
X
∧
B
⊆
A
→
W
↾
𝑠
A
∩
B
=
W
↾
𝑠
B
9
4
8
eqtrd
⊢
A
∈
X
∧
B
⊆
A
→
W
↾
𝑠
A
↾
𝑠
B
=
W
↾
𝑠
B