Metamath Proof Explorer


Theorem ressabs

Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion ressabs A X B A W 𝑠 A 𝑠 B = W 𝑠 B

Proof

Step Hyp Ref Expression
1 ssexg B A A X B V
2 1 ancoms A X B A B V
3 ressress A X B V W 𝑠 A 𝑠 B = W 𝑠 A B
4 2 3 syldan A X B A W 𝑠 A 𝑠 B = W 𝑠 A B
5 simpr A X B A B A
6 sseqin2 B A A B = B
7 5 6 sylib A X B A A B = B
8 7 oveq2d A X B A W 𝑠 A B = W 𝑠 B
9 4 8 eqtrd A X B A W 𝑠 A 𝑠 B = W 𝑠 B