Metamath Proof Explorer


Theorem ressbas2

Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses ressbas.r R = W 𝑠 A
ressbas.b B = Base W
Assertion ressbas2 A B A = Base R

Proof

Step Hyp Ref Expression
1 ressbas.r R = W 𝑠 A
2 ressbas.b B = Base W
3 df-ss A B A B = A
4 3 biimpi A B A B = A
5 2 fvexi B V
6 5 ssex A B A V
7 1 2 ressbas A V A B = Base R
8 6 7 syl A B A B = Base R
9 4 8 eqtr3d A B A = Base R