Metamath Proof Explorer


Theorem ressbasOLD

Description: Obsolete proof of ressbas as of 7-Nov-2024. Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressbasOLD AVAB=BaseR

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 simp1 BAWVAVBA
4 sseqin2 BAAB=B
5 3 4 sylib BAWVAVAB=B
6 1 2 ressid2 BAWVAVR=W
7 6 fveq2d BAWVAVBaseR=BaseW
8 2 5 7 3eqtr4a BAWVAVAB=BaseR
9 8 3expib BAWVAVAB=BaseR
10 simp2 ¬BAWVAVWV
11 2 fvexi BV
12 11 inex2 ABV
13 baseid Base=SlotBasendx
14 13 setsid WVABVAB=BaseWsSetBasendxAB
15 10 12 14 sylancl ¬BAWVAVAB=BaseWsSetBasendxAB
16 1 2 ressval2 ¬BAWVAVR=WsSetBasendxAB
17 16 fveq2d ¬BAWVAVBaseR=BaseWsSetBasendxAB
18 15 17 eqtr4d ¬BAWVAVAB=BaseR
19 18 3expib ¬BAWVAVAB=BaseR
20 9 19 pm2.61i WVAVAB=BaseR
21 0fv Basendx=
22 0ex V
23 22 13 strfvn Base=Basendx
24 in0 A=
25 21 23 24 3eqtr4ri A=Base
26 fvprc ¬WVBaseW=
27 2 26 eqtrid ¬WVB=
28 27 ineq2d ¬WVAB=A
29 reldmress Reldom𝑠
30 29 ovprc1 ¬WVW𝑠A=
31 1 30 eqtrid ¬WVR=
32 31 fveq2d ¬WVBaseR=Base
33 25 28 32 3eqtr4a ¬WVAB=BaseR
34 33 adantr ¬WVAVAB=BaseR
35 20 34 pm2.61ian AVAB=BaseR