Metamath Proof Explorer


Theorem ressbasss

Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses ressbas.r R = W 𝑠 A
ressbas.b B = Base W
Assertion ressbasss Base R B

Proof

Step Hyp Ref Expression
1 ressbas.r R = W 𝑠 A
2 ressbas.b B = Base W
3 1 2 ressbas A V A B = Base R
4 inss2 A B B
5 3 4 eqsstrrdi A V Base R B
6 reldmress Rel dom 𝑠
7 6 ovprc2 ¬ A V W 𝑠 A =
8 1 7 eqtrid ¬ A V R =
9 8 fveq2d ¬ A V Base R = Base
10 base0 = Base
11 0ss B
12 10 11 eqsstrri Base B
13 9 12 eqsstrdi ¬ A V Base R B
14 5 13 pm2.61i Base R B