Metamath Proof Explorer


Theorem resscatc

Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resscatc.c C = CatCat U
resscatc.d D = CatCat V
resscatc.1 φ U W
resscatc.2 φ V U
Assertion resscatc φ Hom 𝑓 C 𝑠 V = Hom 𝑓 D comp 𝑓 C 𝑠 V = comp 𝑓 D

Proof

Step Hyp Ref Expression
1 resscatc.c C = CatCat U
2 resscatc.d D = CatCat V
3 resscatc.1 φ U W
4 resscatc.2 φ V U
5 eqid Base D = Base D
6 3 4 ssexd φ V V
7 6 adantr φ x V Cat y V Cat V V
8 eqid Hom D = Hom D
9 simprl φ x V Cat y V Cat x V Cat
10 2 5 6 catcbas φ Base D = V Cat
11 10 adantr φ x V Cat y V Cat Base D = V Cat
12 9 11 eleqtrrd φ x V Cat y V Cat x Base D
13 simprr φ x V Cat y V Cat y V Cat
14 13 11 eleqtrrd φ x V Cat y V Cat y Base D
15 2 5 7 8 12 14 catchom φ x V Cat y V Cat x Hom D y = x Func y
16 eqid Base C = Base C
17 3 adantr φ x V Cat y V Cat U W
18 eqid Hom C = Hom C
19 inass V U Cat = V U Cat
20 1 16 3 catcbas φ Base C = U Cat
21 20 ineq2d φ V Base C = V U Cat
22 19 21 eqtr4id φ V U Cat = V Base C
23 df-ss V U V U = V
24 4 23 sylib φ V U = V
25 24 ineq1d φ V U Cat = V Cat
26 eqid C 𝑠 V = C 𝑠 V
27 26 16 ressbas V V V Base C = Base C 𝑠 V
28 6 27 syl φ V Base C = Base C 𝑠 V
29 22 25 28 3eqtr3d φ V Cat = Base C 𝑠 V
30 26 16 ressbasss Base C 𝑠 V Base C
31 29 30 eqsstrdi φ V Cat Base C
32 31 adantr φ x V Cat y V Cat V Cat Base C
33 32 9 sseldd φ x V Cat y V Cat x Base C
34 32 13 sseldd φ x V Cat y V Cat y Base C
35 1 16 17 18 33 34 catchom φ x V Cat y V Cat x Hom C y = x Func y
36 26 18 resshom V V Hom C = Hom C 𝑠 V
37 6 36 syl φ Hom C = Hom C 𝑠 V
38 37 oveqdr φ x V Cat y V Cat x Hom C y = x Hom C 𝑠 V y
39 15 35 38 3eqtr2rd φ x V Cat y V Cat x Hom C 𝑠 V y = x Hom D y
40 39 ralrimivva φ x V Cat y V Cat x Hom C 𝑠 V y = x Hom D y
41 eqid Hom C 𝑠 V = Hom C 𝑠 V
42 10 eqcomd φ V Cat = Base D
43 41 8 29 42 homfeq φ Hom 𝑓 C 𝑠 V = Hom 𝑓 D x V Cat y V Cat x Hom C 𝑠 V y = x Hom D y
44 40 43 mpbird φ Hom 𝑓 C 𝑠 V = Hom 𝑓 D
45 6 ad2antrr φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z V V
46 eqid comp D = comp D
47 simplr1 φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z x V Cat
48 10 ad2antrr φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z Base D = V Cat
49 47 48 eleqtrrd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z x Base D
50 simplr2 φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z y V Cat
51 50 48 eleqtrrd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z y Base D
52 simplr3 φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z z V Cat
53 52 48 eleqtrrd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z z Base D
54 simprl φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z f x Hom D y
55 2 5 45 8 49 51 catchom φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z x Hom D y = x Func y
56 54 55 eleqtrd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z f x Func y
57 simprr φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g y Hom D z
58 2 5 45 8 51 53 catchom φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z y Hom D z = y Func z
59 57 58 eleqtrd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g y Func z
60 2 5 45 46 49 51 53 56 59 catcco φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp D z f = g func f
61 3 ad2antrr φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z U W
62 eqid comp C = comp C
63 31 ad2antrr φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z V Cat Base C
64 63 47 sseldd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z x Base C
65 63 50 sseldd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z y Base C
66 63 52 sseldd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z z Base C
67 1 16 61 62 64 65 66 56 59 catcco φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp C z f = g func f
68 26 62 ressco V V comp C = comp C 𝑠 V
69 6 68 syl φ comp C = comp C 𝑠 V
70 69 ad2antrr φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z comp C = comp C 𝑠 V
71 70 oveqd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z x y comp C z = x y comp C 𝑠 V z
72 71 oveqd φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp C z f = g x y comp C 𝑠 V z f
73 60 67 72 3eqtr2d φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp D z f = g x y comp C 𝑠 V z f
74 73 ralrimivva φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp D z f = g x y comp C 𝑠 V z f
75 74 ralrimivvva φ x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp D z f = g x y comp C 𝑠 V z f
76 eqid comp C 𝑠 V = comp C 𝑠 V
77 44 eqcomd φ Hom 𝑓 D = Hom 𝑓 C 𝑠 V
78 46 76 8 42 29 77 comfeq φ comp 𝑓 D = comp 𝑓 C 𝑠 V x V Cat y V Cat z V Cat f x Hom D y g y Hom D z g x y comp D z f = g x y comp C 𝑠 V z f
79 75 78 mpbird φ comp 𝑓 D = comp 𝑓 C 𝑠 V
80 79 eqcomd φ comp 𝑓 C 𝑠 V = comp 𝑓 D
81 44 80 jca φ Hom 𝑓 C 𝑠 V = Hom 𝑓 D comp 𝑓 C 𝑠 V = comp 𝑓 D