Step |
Hyp |
Ref |
Expression |
1 |
|
resscatc.c |
|
2 |
|
resscatc.d |
|
3 |
|
resscatc.1 |
|
4 |
|
resscatc.2 |
|
5 |
|
eqid |
|
6 |
3 4
|
ssexd |
|
7 |
6
|
adantr |
|
8 |
|
eqid |
|
9 |
|
simprl |
|
10 |
2 5 6
|
catcbas |
|
11 |
10
|
adantr |
|
12 |
9 11
|
eleqtrrd |
|
13 |
|
simprr |
|
14 |
13 11
|
eleqtrrd |
|
15 |
2 5 7 8 12 14
|
catchom |
|
16 |
|
eqid |
|
17 |
3
|
adantr |
|
18 |
|
eqid |
|
19 |
|
inass |
|
20 |
1 16 3
|
catcbas |
|
21 |
20
|
ineq2d |
|
22 |
19 21
|
eqtr4id |
|
23 |
|
df-ss |
|
24 |
4 23
|
sylib |
|
25 |
24
|
ineq1d |
|
26 |
|
eqid |
|
27 |
26 16
|
ressbas |
|
28 |
6 27
|
syl |
|
29 |
22 25 28
|
3eqtr3d |
|
30 |
26 16
|
ressbasss |
|
31 |
29 30
|
eqsstrdi |
|
32 |
31
|
adantr |
|
33 |
32 9
|
sseldd |
|
34 |
32 13
|
sseldd |
|
35 |
1 16 17 18 33 34
|
catchom |
|
36 |
26 18
|
resshom |
|
37 |
6 36
|
syl |
|
38 |
37
|
oveqdr |
|
39 |
15 35 38
|
3eqtr2rd |
|
40 |
39
|
ralrimivva |
|
41 |
|
eqid |
|
42 |
10
|
eqcomd |
|
43 |
41 8 29 42
|
homfeq |
|
44 |
40 43
|
mpbird |
|
45 |
6
|
ad2antrr |
|
46 |
|
eqid |
|
47 |
|
simplr1 |
|
48 |
10
|
ad2antrr |
|
49 |
47 48
|
eleqtrrd |
|
50 |
|
simplr2 |
|
51 |
50 48
|
eleqtrrd |
|
52 |
|
simplr3 |
|
53 |
52 48
|
eleqtrrd |
|
54 |
|
simprl |
|
55 |
2 5 45 8 49 51
|
catchom |
|
56 |
54 55
|
eleqtrd |
|
57 |
|
simprr |
|
58 |
2 5 45 8 51 53
|
catchom |
|
59 |
57 58
|
eleqtrd |
|
60 |
2 5 45 46 49 51 53 56 59
|
catcco |
|
61 |
3
|
ad2antrr |
|
62 |
|
eqid |
|
63 |
31
|
ad2antrr |
|
64 |
63 47
|
sseldd |
|
65 |
63 50
|
sseldd |
|
66 |
63 52
|
sseldd |
|
67 |
1 16 61 62 64 65 66 56 59
|
catcco |
|
68 |
26 62
|
ressco |
|
69 |
6 68
|
syl |
|
70 |
69
|
ad2antrr |
|
71 |
70
|
oveqd |
|
72 |
71
|
oveqd |
|
73 |
60 67 72
|
3eqtr2d |
|
74 |
73
|
ralrimivva |
|
75 |
74
|
ralrimivvva |
|
76 |
|
eqid |
|
77 |
44
|
eqcomd |
|
78 |
46 76 8 42 29 77
|
comfeq |
|
79 |
75 78
|
mpbird |
|
80 |
79
|
eqcomd |
|
81 |
44 80
|
jca |
|