Metamath Proof Explorer


Theorem resscdrg

Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis resscdrg.1 F = fld 𝑠 K
Assertion resscdrg K SubRing fld F DivRing F CMetSp K

Proof

Step Hyp Ref Expression
1 resscdrg.1 F = fld 𝑠 K
2 eqid TopOpen fld = TopOpen fld
3 2 cnfldtop TopOpen fld Top
4 ax-resscn
5 qssre
6 unicntop = TopOpen fld
7 2 tgioo2 topGen ran . = TopOpen fld 𝑡
8 6 7 restcls TopOpen fld Top cls topGen ran . = cls TopOpen fld
9 3 4 5 8 mp3an cls topGen ran . = cls TopOpen fld
10 qdensere cls topGen ran . =
11 9 10 eqtr3i cls TopOpen fld =
12 sseqin2 cls TopOpen fld cls TopOpen fld =
13 11 12 mpbir cls TopOpen fld
14 simp3 K SubRing fld F DivRing F CMetSp F CMetSp
15 cncms fld CMetSp
16 cnfldbas = Base fld
17 16 subrgss K SubRing fld K
18 17 3ad2ant1 K SubRing fld F DivRing F CMetSp K
19 1 16 2 cmsss fld CMetSp K F CMetSp K Clsd TopOpen fld
20 15 18 19 sylancr K SubRing fld F DivRing F CMetSp F CMetSp K Clsd TopOpen fld
21 14 20 mpbid K SubRing fld F DivRing F CMetSp K Clsd TopOpen fld
22 1 eleq1i F DivRing fld 𝑠 K DivRing
23 qsssubdrg K SubRing fld fld 𝑠 K DivRing K
24 22 23 sylan2b K SubRing fld F DivRing K
25 24 3adant3 K SubRing fld F DivRing F CMetSp K
26 6 clsss2 K Clsd TopOpen fld K cls TopOpen fld K
27 21 25 26 syl2anc K SubRing fld F DivRing F CMetSp cls TopOpen fld K
28 13 27 sstrid K SubRing fld F DivRing F CMetSp K