Metamath Proof Explorer


Theorem resscntz

Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses resscntz.p H = G 𝑠 A
resscntz.z Z = Cntz G
resscntz.y Y = Cntz H
Assertion resscntz A V S A Y S = Z S A

Proof

Step Hyp Ref Expression
1 resscntz.p H = G 𝑠 A
2 resscntz.z Z = Cntz G
3 resscntz.y Y = Cntz H
4 eqid Base H = Base H
5 4 3 cntzrcl x Y S H V S Base H
6 5 simprd x Y S S Base H
7 eqid Base G = Base G
8 1 7 ressbasss Base H Base G
9 6 8 sstrdi x Y S S Base G
10 9 a1i A V S A x Y S S Base G
11 elinel1 x Z S A x Z S
12 7 2 cntzrcl x Z S G V S Base G
13 12 simprd x Z S S Base G
14 11 13 syl x Z S A S Base G
15 14 a1i A V S A x Z S A S Base G
16 elin x A Base G x A x Base G
17 1 7 ressbas A V A Base G = Base H
18 17 eleq2d A V x A Base G x Base H
19 16 18 bitr3id A V x A x Base G x Base H
20 eqid + G = + G
21 1 20 ressplusg A V + G = + H
22 21 oveqd A V x + G y = x + H y
23 21 oveqd A V y + G x = y + H x
24 22 23 eqeq12d A V x + G y = y + G x x + H y = y + H x
25 24 ralbidv A V y S x + G y = y + G x y S x + H y = y + H x
26 19 25 anbi12d A V x A x Base G y S x + G y = y + G x x Base H y S x + H y = y + H x
27 26 ad2antrr A V S A S Base G x A x Base G y S x + G y = y + G x x Base H y S x + H y = y + H x
28 anass x A x Base G y S x + G y = y + G x x A x Base G y S x + G y = y + G x
29 27 28 bitr3di A V S A S Base G x Base H y S x + H y = y + H x x A x Base G y S x + G y = y + G x
30 ssin S A S Base G S A Base G
31 17 sseq2d A V S A Base G S Base H
32 30 31 syl5bb A V S A S Base G S Base H
33 32 biimpd A V S A S Base G S Base H
34 33 impl A V S A S Base G S Base H
35 eqid + H = + H
36 4 35 3 elcntz S Base H x Y S x Base H y S x + H y = y + H x
37 34 36 syl A V S A S Base G x Y S x Base H y S x + H y = y + H x
38 elin x Z S A x Z S x A
39 38 biancomi x Z S A x A x Z S
40 7 20 2 elcntz S Base G x Z S x Base G y S x + G y = y + G x
41 40 adantl A V S A S Base G x Z S x Base G y S x + G y = y + G x
42 41 anbi2d A V S A S Base G x A x Z S x A x Base G y S x + G y = y + G x
43 39 42 syl5bb A V S A S Base G x Z S A x A x Base G y S x + G y = y + G x
44 29 37 43 3bitr4d A V S A S Base G x Y S x Z S A
45 44 ex A V S A S Base G x Y S x Z S A
46 10 15 45 pm5.21ndd A V S A x Y S x Z S A
47 46 eqrdv A V S A Y S = Z S A