Database
BASIC STRUCTURES
Extensible structures
Slot definitions
ressco
Next ⟩
Definition of the structure product
Metamath Proof Explorer
Ascii
Unicode
Theorem
ressco
Description:
comp
is unaffected by restriction.
(Contributed by
Mario Carneiro
, 5-Jan-2017)
Ref
Expression
Hypotheses
resshom.1
⊢
D
=
C
↾
𝑠
A
ressco.2
⊢
·
˙
=
comp
⁡
C
Assertion
ressco
⊢
A
∈
V
→
·
˙
=
comp
⁡
D
Proof
Step
Hyp
Ref
Expression
1
resshom.1
⊢
D
=
C
↾
𝑠
A
2
ressco.2
⊢
·
˙
=
comp
⁡
C
3
ccoid
⊢
comp
=
Slot
comp
⁡
ndx
4
slotsbhcdif
⊢
Base
ndx
≠
Hom
⁡
ndx
∧
Base
ndx
≠
comp
⁡
ndx
∧
Hom
⁡
ndx
≠
comp
⁡
ndx
5
simp2
⊢
Base
ndx
≠
Hom
⁡
ndx
∧
Base
ndx
≠
comp
⁡
ndx
∧
Hom
⁡
ndx
≠
comp
⁡
ndx
→
Base
ndx
≠
comp
⁡
ndx
6
5
necomd
⊢
Base
ndx
≠
Hom
⁡
ndx
∧
Base
ndx
≠
comp
⁡
ndx
∧
Hom
⁡
ndx
≠
comp
⁡
ndx
→
comp
⁡
ndx
≠
Base
ndx
7
4
6
ax-mp
⊢
comp
⁡
ndx
≠
Base
ndx
8
1
2
3
7
resseqnbas
⊢
A
∈
V
→
·
˙
=
comp
⁡
D