Metamath Proof Explorer


Theorem ressdeg1

Description: The degree of a univariate polynomial in a structure restriction. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ressdeg1.h H = R 𝑠 T
ressdeg1.d D = deg 1 R
ressdeg1.u U = Poly 1 H
ressdeg1.b B = Base U
ressdeg1.p φ P B
ressdeg1.t φ T SubRing R
Assertion ressdeg1 φ D P = deg 1 H P

Proof

Step Hyp Ref Expression
1 ressdeg1.h H = R 𝑠 T
2 ressdeg1.d D = deg 1 R
3 ressdeg1.u U = Poly 1 H
4 ressdeg1.b B = Base U
5 ressdeg1.p φ P B
6 ressdeg1.t φ T SubRing R
7 eqid 0 R = 0 R
8 1 7 subrg0 T SubRing R 0 R = 0 H
9 6 8 syl φ 0 R = 0 H
10 9 oveq2d φ coe 1 P supp 0 R = coe 1 P supp 0 H
11 10 supeq1d φ sup coe 1 P supp 0 R * < = sup coe 1 P supp 0 H * <
12 eqid Poly 1 R = Poly 1 R
13 eqid PwSer 1 H = PwSer 1 H
14 eqid Base PwSer 1 H = Base PwSer 1 H
15 eqid Base Poly 1 R = Base Poly 1 R
16 12 1 3 4 6 13 14 15 ressply1bas2 φ B = Base PwSer 1 H Base Poly 1 R
17 5 16 eleqtrd φ P Base PwSer 1 H Base Poly 1 R
18 17 elin2d φ P Base Poly 1 R
19 eqid coe 1 P = coe 1 P
20 2 12 15 7 19 deg1val P Base Poly 1 R D P = sup coe 1 P supp 0 R * <
21 18 20 syl φ D P = sup coe 1 P supp 0 R * <
22 eqid deg 1 H = deg 1 H
23 eqid 0 H = 0 H
24 22 3 4 23 19 deg1val P B deg 1 H P = sup coe 1 P supp 0 H * <
25 5 24 syl φ deg 1 H P = sup coe 1 P supp 0 H * <
26 11 21 25 3eqtr4d φ D P = deg 1 H P