Metamath Proof Explorer


Theorem ressffth

Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in Adamek p. 49. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses ressffth.d D = C 𝑠 S
ressffth.i I = id func D
Assertion ressffth C Cat S V I D Full C D Faith C

Proof

Step Hyp Ref Expression
1 ressffth.d D = C 𝑠 S
2 ressffth.i I = id func D
3 relfunc Rel D Func D
4 resscat C Cat S V C 𝑠 S Cat
5 1 4 eqeltrid C Cat S V D Cat
6 2 idfucl D Cat I D Func D
7 5 6 syl C Cat S V I D Func D
8 1st2nd Rel D Func D I D Func D I = 1 st I 2 nd I
9 3 7 8 sylancr C Cat S V I = 1 st I 2 nd I
10 eqidd C Cat S V Hom 𝑓 D = Hom 𝑓 D
11 eqidd C Cat S V comp 𝑓 D = comp 𝑓 D
12 eqid Base C = Base C
13 12 ressinbas S V C 𝑠 S = C 𝑠 S Base C
14 13 adantl C Cat S V C 𝑠 S = C 𝑠 S Base C
15 1 14 syl5eq C Cat S V D = C 𝑠 S Base C
16 15 fveq2d C Cat S V Hom 𝑓 D = Hom 𝑓 C 𝑠 S Base C
17 eqid Hom 𝑓 C = Hom 𝑓 C
18 simpl C Cat S V C Cat
19 inss2 S Base C Base C
20 19 a1i C Cat S V S Base C Base C
21 eqid C 𝑠 S Base C = C 𝑠 S Base C
22 eqid C cat Hom 𝑓 C S Base C × S Base C = C cat Hom 𝑓 C S Base C × S Base C
23 12 17 18 20 21 22 fullresc C Cat S V Hom 𝑓 C 𝑠 S Base C = Hom 𝑓 C cat Hom 𝑓 C S Base C × S Base C comp 𝑓 C 𝑠 S Base C = comp 𝑓 C cat Hom 𝑓 C S Base C × S Base C
24 23 simpld C Cat S V Hom 𝑓 C 𝑠 S Base C = Hom 𝑓 C cat Hom 𝑓 C S Base C × S Base C
25 16 24 eqtrd C Cat S V Hom 𝑓 D = Hom 𝑓 C cat Hom 𝑓 C S Base C × S Base C
26 15 fveq2d C Cat S V comp 𝑓 D = comp 𝑓 C 𝑠 S Base C
27 23 simprd C Cat S V comp 𝑓 C 𝑠 S Base C = comp 𝑓 C cat Hom 𝑓 C S Base C × S Base C
28 26 27 eqtrd C Cat S V comp 𝑓 D = comp 𝑓 C cat Hom 𝑓 C S Base C × S Base C
29 1 ovexi D V
30 29 a1i C Cat S V D V
31 ovexd C Cat S V C cat Hom 𝑓 C S Base C × S Base C V
32 10 11 25 28 30 30 30 31 funcpropd C Cat S V D Func D = D Func C cat Hom 𝑓 C S Base C × S Base C
33 12 17 18 20 fullsubc C Cat S V Hom 𝑓 C S Base C × S Base C Subcat C
34 funcres2 Hom 𝑓 C S Base C × S Base C Subcat C D Func C cat Hom 𝑓 C S Base C × S Base C D Func C
35 33 34 syl C Cat S V D Func C cat Hom 𝑓 C S Base C × S Base C D Func C
36 32 35 eqsstrd C Cat S V D Func D D Func C
37 36 7 sseldd C Cat S V I D Func C
38 9 37 eqeltrrd C Cat S V 1 st I 2 nd I D Func C
39 df-br 1 st I D Func C 2 nd I 1 st I 2 nd I D Func C
40 38 39 sylibr C Cat S V 1 st I D Func C 2 nd I
41 f1oi I x Hom D y : x Hom D y 1-1 onto x Hom D y
42 eqid Base D = Base D
43 5 adantr C Cat S V x Base D y Base D D Cat
44 eqid Hom D = Hom D
45 simprl C Cat S V x Base D y Base D x Base D
46 simprr C Cat S V x Base D y Base D y Base D
47 2 42 43 44 45 46 idfu2nd C Cat S V x Base D y Base D x 2 nd I y = I x Hom D y
48 eqidd C Cat S V x Base D y Base D x Hom D y = x Hom D y
49 eqid Hom C = Hom C
50 1 49 resshom S V Hom C = Hom D
51 50 ad2antlr C Cat S V x Base D y Base D Hom C = Hom D
52 2 42 43 45 idfu1 C Cat S V x Base D y Base D 1 st I x = x
53 2 42 43 46 idfu1 C Cat S V x Base D y Base D 1 st I y = y
54 51 52 53 oveq123d C Cat S V x Base D y Base D 1 st I x Hom C 1 st I y = x Hom D y
55 47 48 54 f1oeq123d C Cat S V x Base D y Base D x 2 nd I y : x Hom D y 1-1 onto 1 st I x Hom C 1 st I y I x Hom D y : x Hom D y 1-1 onto x Hom D y
56 41 55 mpbiri C Cat S V x Base D y Base D x 2 nd I y : x Hom D y 1-1 onto 1 st I x Hom C 1 st I y
57 56 ralrimivva C Cat S V x Base D y Base D x 2 nd I y : x Hom D y 1-1 onto 1 st I x Hom C 1 st I y
58 42 44 49 isffth2 1 st I D Full C D Faith C 2 nd I 1 st I D Func C 2 nd I x Base D y Base D x 2 nd I y : x Hom D y 1-1 onto 1 st I x Hom C 1 st I y
59 40 57 58 sylanbrc C Cat S V 1 st I D Full C D Faith C 2 nd I
60 df-br 1 st I D Full C D Faith C 2 nd I 1 st I 2 nd I D Full C D Faith C
61 59 60 sylib C Cat S V 1 st I 2 nd I D Full C D Faith C
62 9 61 eqeltrd C Cat S V I D Full C D Faith C