Step |
Hyp |
Ref |
Expression |
1 |
|
ressffth.d |
|
2 |
|
ressffth.i |
|
3 |
|
relfunc |
|
4 |
|
resscat |
|
5 |
1 4
|
eqeltrid |
|
6 |
2
|
idfucl |
|
7 |
5 6
|
syl |
|
8 |
|
1st2nd |
|
9 |
3 7 8
|
sylancr |
|
10 |
|
eqidd |
|
11 |
|
eqidd |
|
12 |
|
eqid |
|
13 |
12
|
ressinbas |
|
14 |
13
|
adantl |
|
15 |
1 14
|
eqtrid |
|
16 |
15
|
fveq2d |
|
17 |
|
eqid |
|
18 |
|
simpl |
|
19 |
|
inss2 |
|
20 |
19
|
a1i |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
12 17 18 20 21 22
|
fullresc |
|
24 |
23
|
simpld |
|
25 |
16 24
|
eqtrd |
|
26 |
15
|
fveq2d |
|
27 |
23
|
simprd |
|
28 |
26 27
|
eqtrd |
|
29 |
1
|
ovexi |
|
30 |
29
|
a1i |
|
31 |
|
ovexd |
|
32 |
10 11 25 28 30 30 30 31
|
funcpropd |
|
33 |
12 17 18 20
|
fullsubc |
|
34 |
|
funcres2 |
|
35 |
33 34
|
syl |
|
36 |
32 35
|
eqsstrd |
|
37 |
36 7
|
sseldd |
|
38 |
9 37
|
eqeltrrd |
|
39 |
|
df-br |
|
40 |
38 39
|
sylibr |
|
41 |
|
f1oi |
|
42 |
|
eqid |
|
43 |
5
|
adantr |
|
44 |
|
eqid |
|
45 |
|
simprl |
|
46 |
|
simprr |
|
47 |
2 42 43 44 45 46
|
idfu2nd |
|
48 |
|
eqidd |
|
49 |
|
eqid |
|
50 |
1 49
|
resshom |
|
51 |
50
|
ad2antlr |
|
52 |
2 42 43 45
|
idfu1 |
|
53 |
2 42 43 46
|
idfu1 |
|
54 |
51 52 53
|
oveq123d |
|
55 |
47 48 54
|
f1oeq123d |
|
56 |
41 55
|
mpbiri |
|
57 |
56
|
ralrimivva |
|
58 |
42 44 49
|
isffth2 |
|
59 |
40 57 58
|
sylanbrc |
|
60 |
|
df-br |
|
61 |
59 60
|
sylib |
|
62 |
9 61
|
eqeltrd |
|