Database
BASIC STRUCTURES
Extensible structures
Slot definitions
resshom
Next ⟩
ressco
Metamath Proof Explorer
Ascii
Unicode
Theorem
resshom
Description:
Hom
is unaffected by restriction.
(Contributed by
Mario Carneiro
, 5-Jan-2017)
Ref
Expression
Hypotheses
resshom.1
⊢
D
=
C
↾
𝑠
A
resshom.2
⊢
H
=
Hom
⁡
C
Assertion
resshom
⊢
A
∈
V
→
H
=
Hom
⁡
D
Proof
Step
Hyp
Ref
Expression
1
resshom.1
⊢
D
=
C
↾
𝑠
A
2
resshom.2
⊢
H
=
Hom
⁡
C
3
homid
⊢
Hom
=
Slot
Hom
⁡
ndx
4
slotsbhcdif
⊢
Base
ndx
≠
Hom
⁡
ndx
∧
Base
ndx
≠
comp
⁡
ndx
∧
Hom
⁡
ndx
≠
comp
⁡
ndx
5
simp1
⊢
Base
ndx
≠
Hom
⁡
ndx
∧
Base
ndx
≠
comp
⁡
ndx
∧
Hom
⁡
ndx
≠
comp
⁡
ndx
→
Base
ndx
≠
Hom
⁡
ndx
6
5
necomd
⊢
Base
ndx
≠
Hom
⁡
ndx
∧
Base
ndx
≠
comp
⁡
ndx
∧
Hom
⁡
ndx
≠
comp
⁡
ndx
→
Hom
⁡
ndx
≠
Base
ndx
7
4
6
ax-mp
⊢
Hom
⁡
ndx
≠
Base
ndx
8
1
2
3
7
resseqnbas
⊢
A
∈
V
→
H
=
Hom
⁡
D