Metamath Proof Explorer


Theorem ressid

Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypothesis ressid.1 B = Base W
Assertion ressid W X W 𝑠 B = W

Proof

Step Hyp Ref Expression
1 ressid.1 B = Base W
2 ssid B B
3 1 fvexi B V
4 eqid W 𝑠 B = W 𝑠 B
5 4 1 ressid2 B B W X B V W 𝑠 B = W
6 2 3 5 mp3an13 W X W 𝑠 B = W