Database
BASIC STRUCTURES
Extensible structures
Basic definitions
Base set restrictions
ressid
Next ⟩
ressinbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
ressid
Description:
Behavior of trivial restriction.
(Contributed by
Stefan O'Rear
, 29-Nov-2014)
Ref
Expression
Hypothesis
ressid.1
⊢
B
=
Base
W
Assertion
ressid
⊢
W
∈
X
→
W
↾
𝑠
B
=
W
Proof
Step
Hyp
Ref
Expression
1
ressid.1
⊢
B
=
Base
W
2
ssid
⊢
B
⊆
B
3
1
fvexi
⊢
B
∈
V
4
eqid
⊢
W
↾
𝑠
B
=
W
↾
𝑠
B
5
4
1
ressid2
⊢
B
⊆
B
∧
W
∈
X
∧
B
∈
V
→
W
↾
𝑠
B
=
W
6
2
3
5
mp3an13
⊢
W
∈
X
→
W
↾
𝑠
B
=
W