Metamath Proof Explorer


Theorem ressid2

Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r R = W 𝑠 A
ressbas.b B = Base W
Assertion ressid2 B A W X A Y R = W

Proof

Step Hyp Ref Expression
1 ressbas.r R = W 𝑠 A
2 ressbas.b B = Base W
3 1 2 ressval W X A Y R = if B A W W sSet Base ndx A B
4 iftrue B A if B A W W sSet Base ndx A B = W
5 3 4 sylan9eqr B A W X A Y R = W
6 5 3impb B A W X A Y R = W