Metamath Proof Explorer


Theorem ressiooinf

Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ressiooinf.a φ A
ressiooinf.s S = sup A * <
ressiooinf.n φ ¬ S A
ressiooinf.i I = S +∞
Assertion ressiooinf φ A I

Proof

Step Hyp Ref Expression
1 ressiooinf.a φ A
2 ressiooinf.s S = sup A * <
3 ressiooinf.n φ ¬ S A
4 ressiooinf.i I = S +∞
5 ressxr *
6 5 a1i φ *
7 1 6 sstrd φ A *
8 7 adantr φ x A A *
9 8 infxrcld φ x A sup A * < *
10 2 9 eqeltrid φ x A S *
11 pnfxr +∞ *
12 11 a1i φ x A +∞ *
13 1 adantr φ x A A
14 simpr φ x A x A
15 13 14 sseldd φ x A x
16 7 sselda φ x A x *
17 infxrlb A * x A sup A * < x
18 8 14 17 syl2anc φ x A sup A * < x
19 2 18 eqbrtrid φ x A S x
20 id x = S x = S
21 20 eqcomd x = S S = x
22 21 adantl x A x = S S = x
23 simpl x A x = S x A
24 22 23 eqeltrd x A x = S S A
25 24 adantll φ x A x = S S A
26 3 ad2antrr φ x A x = S ¬ S A
27 25 26 pm2.65da φ x A ¬ x = S
28 27 neqned φ x A x S
29 28 necomd φ x A S x
30 10 16 19 29 xrleneltd φ x A S < x
31 15 ltpnfd φ x A x < +∞
32 10 12 15 30 31 eliood φ x A x S +∞
33 32 4 eleqtrrdi φ x A x I
34 33 ralrimiva φ x A x I
35 dfss3 A I x A x I
36 34 35 sylibr φ A I