| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressiooinf.a |
|
| 2 |
|
ressiooinf.s |
|
| 3 |
|
ressiooinf.n |
|
| 4 |
|
ressiooinf.i |
|
| 5 |
|
ressxr |
|
| 6 |
5
|
a1i |
|
| 7 |
1 6
|
sstrd |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
infxrcld |
|
| 10 |
2 9
|
eqeltrid |
|
| 11 |
|
pnfxr |
|
| 12 |
11
|
a1i |
|
| 13 |
1
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
13 14
|
sseldd |
|
| 16 |
7
|
sselda |
|
| 17 |
|
infxrlb |
|
| 18 |
8 14 17
|
syl2anc |
|
| 19 |
2 18
|
eqbrtrid |
|
| 20 |
|
id |
|
| 21 |
20
|
eqcomd |
|
| 22 |
21
|
adantl |
|
| 23 |
|
simpl |
|
| 24 |
22 23
|
eqeltrd |
|
| 25 |
24
|
adantll |
|
| 26 |
3
|
ad2antrr |
|
| 27 |
25 26
|
pm2.65da |
|
| 28 |
27
|
neqned |
|
| 29 |
28
|
necomd |
|
| 30 |
10 16 19 29
|
xrleneltd |
|
| 31 |
15
|
ltpnfd |
|
| 32 |
10 12 15 30 31
|
eliood |
|
| 33 |
32 4
|
eleqtrrdi |
|
| 34 |
33
|
ralrimiva |
|
| 35 |
|
dfss3 |
|
| 36 |
34 35
|
sylibr |
|