Step |
Hyp |
Ref |
Expression |
1 |
|
ressiooinf.a |
|
2 |
|
ressiooinf.s |
|
3 |
|
ressiooinf.n |
|
4 |
|
ressiooinf.i |
|
5 |
|
ressxr |
|
6 |
5
|
a1i |
|
7 |
1 6
|
sstrd |
|
8 |
7
|
adantr |
|
9 |
8
|
infxrcld |
|
10 |
2 9
|
eqeltrid |
|
11 |
|
pnfxr |
|
12 |
11
|
a1i |
|
13 |
1
|
adantr |
|
14 |
|
simpr |
|
15 |
13 14
|
sseldd |
|
16 |
7
|
sselda |
|
17 |
|
infxrlb |
|
18 |
8 14 17
|
syl2anc |
|
19 |
2 18
|
eqbrtrid |
|
20 |
|
id |
|
21 |
20
|
eqcomd |
|
22 |
21
|
adantl |
|
23 |
|
simpl |
|
24 |
22 23
|
eqeltrd |
|
25 |
24
|
adantll |
|
26 |
3
|
ad2antrr |
|
27 |
25 26
|
pm2.65da |
|
28 |
27
|
neqned |
|
29 |
28
|
necomd |
|
30 |
10 16 19 29
|
xrleneltd |
|
31 |
15
|
ltpnfd |
|
32 |
10 12 15 30 31
|
eliood |
|
33 |
32 4
|
eleqtrrdi |
|
34 |
33
|
ralrimiva |
|
35 |
|
dfss3 |
|
36 |
34 35
|
sylibr |
|