Metamath Proof Explorer


Theorem ressioosup

Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ressioosup.a φ A
ressioosup.s S = sup A * <
ressioosup.n φ ¬ S A
ressioosup.i I = −∞ S
Assertion ressioosup φ A I

Proof

Step Hyp Ref Expression
1 ressioosup.a φ A
2 ressioosup.s S = sup A * <
3 ressioosup.n φ ¬ S A
4 ressioosup.i I = −∞ S
5 mnfxr −∞ *
6 5 a1i φ x A −∞ *
7 ressxr *
8 7 a1i φ *
9 1 8 sstrd φ A *
10 9 adantr φ x A A *
11 10 supxrcld φ x A sup A * < *
12 2 11 eqeltrid φ x A S *
13 1 adantr φ x A A
14 simpr φ x A x A
15 13 14 sseldd φ x A x
16 15 mnfltd φ x A −∞ < x
17 9 sselda φ x A x *
18 supxrub A * x A x sup A * <
19 10 14 18 syl2anc φ x A x sup A * <
20 2 a1i φ x A S = sup A * <
21 20 eqcomd φ x A sup A * < = S
22 19 21 breqtrd φ x A x S
23 id x = S x = S
24 23 eqcomd x = S S = x
25 24 adantl x A x = S S = x
26 simpl x A x = S x A
27 25 26 eqeltrd x A x = S S A
28 27 adantll φ x A x = S S A
29 3 ad2antrr φ x A x = S ¬ S A
30 28 29 pm2.65da φ x A ¬ x = S
31 30 neqned φ x A x S
32 17 12 22 31 xrleneltd φ x A x < S
33 6 12 15 16 32 eliood φ x A x −∞ S
34 33 4 eleqtrrdi φ x A x I
35 34 ralrimiva φ x A x I
36 dfss3 A I x A x I
37 35 36 sylibr φ A I