Metamath Proof Explorer


Theorem ressmplmul

Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S = I mPoly R
ressmpl.h H = R 𝑠 T
ressmpl.u U = I mPoly H
ressmpl.b B = Base U
ressmpl.1 φ I V
ressmpl.2 φ T SubRing R
ressmpl.p P = S 𝑠 B
Assertion ressmplmul φ X B Y B X U Y = X P Y

Proof

Step Hyp Ref Expression
1 ressmpl.s S = I mPoly R
2 ressmpl.h H = R 𝑠 T
3 ressmpl.u U = I mPoly H
4 ressmpl.b B = Base U
5 ressmpl.1 φ I V
6 ressmpl.2 φ T SubRing R
7 ressmpl.p P = S 𝑠 B
8 eqid I mPwSer H = I mPwSer H
9 eqid Base I mPwSer H = Base I mPwSer H
10 3 8 4 9 mplbasss B Base I mPwSer H
11 10 sseli X B X Base I mPwSer H
12 10 sseli Y B Y Base I mPwSer H
13 11 12 anim12i X B Y B X Base I mPwSer H Y Base I mPwSer H
14 eqid I mPwSer R = I mPwSer R
15 eqid I mPwSer R 𝑠 Base I mPwSer H = I mPwSer R 𝑠 Base I mPwSer H
16 14 2 8 9 15 6 resspsrmul φ X Base I mPwSer H Y Base I mPwSer H X I mPwSer H Y = X I mPwSer R 𝑠 Base I mPwSer H Y
17 13 16 sylan2 φ X B Y B X I mPwSer H Y = X I mPwSer R 𝑠 Base I mPwSer H Y
18 4 fvexi B V
19 3 8 4 mplval2 U = I mPwSer H 𝑠 B
20 eqid I mPwSer H = I mPwSer H
21 19 20 ressmulr B V I mPwSer H = U
22 18 21 ax-mp I mPwSer H = U
23 22 oveqi X I mPwSer H Y = X U Y
24 fvex Base S V
25 eqid Base S = Base S
26 1 14 25 mplval2 S = I mPwSer R 𝑠 Base S
27 eqid I mPwSer R = I mPwSer R
28 26 27 ressmulr Base S V I mPwSer R = S
29 24 28 ax-mp I mPwSer R = S
30 fvex Base I mPwSer H V
31 15 27 ressmulr Base I mPwSer H V I mPwSer R = I mPwSer R 𝑠 Base I mPwSer H
32 30 31 ax-mp I mPwSer R = I mPwSer R 𝑠 Base I mPwSer H
33 eqid S = S
34 7 33 ressmulr B V S = P
35 18 34 ax-mp S = P
36 29 32 35 3eqtr3i I mPwSer R 𝑠 Base I mPwSer H = P
37 36 oveqi X I mPwSer R 𝑠 Base I mPwSer H Y = X P Y
38 17 23 37 3eqtr3g φ X B Y B X U Y = X P Y