Metamath Proof Explorer


Theorem ressmplvsca

Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S = I mPoly R
ressmpl.h H = R 𝑠 T
ressmpl.u U = I mPoly H
ressmpl.b B = Base U
ressmpl.1 φ I V
ressmpl.2 φ T SubRing R
ressmpl.p P = S 𝑠 B
Assertion ressmplvsca φ X T Y B X U Y = X P Y

Proof

Step Hyp Ref Expression
1 ressmpl.s S = I mPoly R
2 ressmpl.h H = R 𝑠 T
3 ressmpl.u U = I mPoly H
4 ressmpl.b B = Base U
5 ressmpl.1 φ I V
6 ressmpl.2 φ T SubRing R
7 ressmpl.p P = S 𝑠 B
8 eqid I mPwSer H = I mPwSer H
9 eqid Base I mPwSer H = Base I mPwSer H
10 3 8 4 9 mplbasss B Base I mPwSer H
11 10 sseli Y B Y Base I mPwSer H
12 eqid I mPwSer R = I mPwSer R
13 eqid I mPwSer R 𝑠 Base I mPwSer H = I mPwSer R 𝑠 Base I mPwSer H
14 12 2 8 9 13 6 resspsrvsca φ X T Y Base I mPwSer H X I mPwSer H Y = X I mPwSer R 𝑠 Base I mPwSer H Y
15 11 14 sylanr2 φ X T Y B X I mPwSer H Y = X I mPwSer R 𝑠 Base I mPwSer H Y
16 4 fvexi B V
17 3 8 4 mplval2 U = I mPwSer H 𝑠 B
18 eqid I mPwSer H = I mPwSer H
19 17 18 ressvsca B V I mPwSer H = U
20 16 19 ax-mp I mPwSer H = U
21 20 oveqi X I mPwSer H Y = X U Y
22 fvex Base S V
23 eqid Base S = Base S
24 1 12 23 mplval2 S = I mPwSer R 𝑠 Base S
25 eqid I mPwSer R = I mPwSer R
26 24 25 ressvsca Base S V I mPwSer R = S
27 22 26 ax-mp I mPwSer R = S
28 fvex Base I mPwSer H V
29 13 25 ressvsca Base I mPwSer H V I mPwSer R = I mPwSer R 𝑠 Base I mPwSer H
30 28 29 ax-mp I mPwSer R = I mPwSer R 𝑠 Base I mPwSer H
31 eqid S = S
32 7 31 ressvsca B V S = P
33 16 32 ax-mp S = P
34 27 30 33 3eqtr3i I mPwSer R 𝑠 Base I mPwSer H = P
35 34 oveqi X I mPwSer R 𝑠 Base I mPwSer H Y = X P Y
36 15 21 35 3eqtr3g φ X T Y B X U Y = X P Y