Metamath Proof Explorer


Theorem ressmulgnn0

Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017)

Ref Expression
Hypotheses ressmulgnn.1 H = G 𝑠 A
ressmulgnn.2 A Base G
ressmulgnn.3 ˙ = G
ressmulgnn.4 I = inv g G
ressmulgnn0.4 0 G = 0 H
Assertion ressmulgnn0 N 0 X A N H X = N ˙ X

Proof

Step Hyp Ref Expression
1 ressmulgnn.1 H = G 𝑠 A
2 ressmulgnn.2 A Base G
3 ressmulgnn.3 ˙ = G
4 ressmulgnn.4 I = inv g G
5 ressmulgnn0.4 0 G = 0 H
6 simpr N 0 X A N N
7 simplr N 0 X A N X A
8 1 2 3 4 ressmulgnn N X A N H X = N ˙ X
9 6 7 8 syl2anc N 0 X A N N H X = N ˙ X
10 simplr N 0 X A N = 0 X A
11 eqid Base G = Base G
12 1 11 ressbas2 A Base G A = Base H
13 2 12 ax-mp A = Base H
14 eqid H = H
15 13 5 14 mulg0 X A 0 H X = 0 G
16 10 15 syl N 0 X A N = 0 0 H X = 0 G
17 simpr N 0 X A N = 0 N = 0
18 17 oveq1d N 0 X A N = 0 N H X = 0 H X
19 2 10 sselid N 0 X A N = 0 X Base G
20 eqid 0 G = 0 G
21 11 20 3 mulg0 X Base G 0 ˙ X = 0 G
22 19 21 syl N 0 X A N = 0 0 ˙ X = 0 G
23 16 18 22 3eqtr4d N 0 X A N = 0 N H X = 0 ˙ X
24 17 oveq1d N 0 X A N = 0 N ˙ X = 0 ˙ X
25 23 24 eqtr4d N 0 X A N = 0 N H X = N ˙ X
26 elnn0 N 0 N N = 0
27 26 biimpi N 0 N N = 0
28 27 adantr N 0 X A N N = 0
29 9 25 28 mpjaodan N 0 X A N H X = N ˙ X