Metamath Proof Explorer


Theorem ressmulgnnd

Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025)

Ref Expression
Hypotheses ressmulgnnd.1 H = G 𝑠 A
ressmulgnnd.2 φ A Base G
ressmulgnnd.3 φ X A
ressmulgnnd.4 φ N
Assertion ressmulgnnd φ N H X = N G X

Proof

Step Hyp Ref Expression
1 ressmulgnnd.1 H = G 𝑠 A
2 ressmulgnnd.2 φ A Base G
3 ressmulgnnd.3 φ X A
4 ressmulgnnd.4 φ N
5 4 nngt0d φ 0 < N
6 4 adantr φ 0 < N N
7 3 adantr φ 0 < N X A
8 eqid G 𝑠 A = G 𝑠 A
9 eqid Base G = Base G
10 8 9 ressbas2 A Base G A = Base G 𝑠 A
11 2 10 syl φ A = Base G 𝑠 A
12 11 adantr φ 0 < N A = Base G 𝑠 A
13 eqcom H = G 𝑠 A G 𝑠 A = H
14 1 13 mpbi G 𝑠 A = H
15 14 fveq2i Base G 𝑠 A = Base H
16 15 a1i φ 0 < N Base G 𝑠 A = Base H
17 12 16 eqtrd φ 0 < N A = Base H
18 7 17 eleqtrd φ 0 < N X Base H
19 eqid Base H = Base H
20 eqid + H = + H
21 eqid H = H
22 eqid seq 1 + H × X = seq 1 + H × X
23 19 20 21 22 mulgnn N X Base H N H X = seq 1 + H × X N
24 6 18 23 syl2anc φ 0 < N N H X = seq 1 + H × X N
25 fvexd φ Base G V
26 25 2 ssexd φ A V
27 eqid + G = + G
28 1 27 ressplusg A V + G = + H
29 26 28 syl φ + G = + H
30 29 eqcomd φ + H = + G
31 30 adantr φ 0 < N + H = + G
32 31 seqeq2d φ 0 < N seq 1 + H × X = seq 1 + G × X
33 32 fveq1d φ 0 < N seq 1 + H × X N = seq 1 + G × X N
34 2 3 sseldd φ X Base G
35 34 adantr φ 0 < N X Base G
36 eqid G = G
37 eqid seq 1 + G × X = seq 1 + G × X
38 9 27 36 37 mulgnn N X Base G N G X = seq 1 + G × X N
39 6 35 38 syl2anc φ 0 < N N G X = seq 1 + G × X N
40 39 eqcomd φ 0 < N seq 1 + G × X N = N G X
41 24 33 40 3eqtrd φ 0 < N N H X = N G X
42 41 ex φ 0 < N N H X = N G X
43 5 42 mpd φ N H X = N G X