Metamath Proof Explorer


Theorem ressn

Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion ressn A B = B × A B

Proof

Step Hyp Ref Expression
1 relres Rel A B
2 relxp Rel B × A B
3 vex x V
4 vex y V
5 3 4 elimasn y A x x y A
6 elsni x B x = B
7 6 sneqd x B x = B
8 7 imaeq2d x B A x = A B
9 8 eleq2d x B y A x y A B
10 5 9 bitr3id x B x y A y A B
11 10 pm5.32i x B x y A x B y A B
12 4 opelresi x y A B x B x y A
13 opelxp x y B × A B x B y A B
14 11 12 13 3bitr4i x y A B x y B × A B
15 1 2 14 eqrelriiv A B = B × A B