Metamath Proof Explorer
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ressplusg.1 |
|
|
|
ressplusg.2 |
|
|
Assertion |
ressplusg |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressplusg.1 |
|
| 2 |
|
ressplusg.2 |
|
| 3 |
|
plusgid |
|
| 4 |
|
basendxnplusgndx |
|
| 5 |
4
|
necomi |
|
| 6 |
1 2 3 5
|
resseqnbas |
|