Metamath Proof Explorer


Theorem ressplusg

Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses ressplusg.1 H = G 𝑠 A
ressplusg.2 + ˙ = + G
Assertion ressplusg A V + ˙ = + H

Proof

Step Hyp Ref Expression
1 ressplusg.1 H = G 𝑠 A
2 ressplusg.2 + ˙ = + G
3 plusgid + 𝑔 = Slot + ndx
4 basendxnplusgndx Base ndx + ndx
5 4 necomi + ndx Base ndx
6 1 2 3 5 resseqnbas A V + ˙ = + H