Metamath Proof Explorer


Theorem ressply10g

Description: A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ressply.1 S = Poly 1 R
ressply.2 H = R 𝑠 T
ressply.3 U = Poly 1 H
ressply.4 B = Base U
ressply.5 φ T SubRing R
ressply10g.6 Z = 0 S
Assertion ressply10g φ Z = 0 U

Proof

Step Hyp Ref Expression
1 ressply.1 S = Poly 1 R
2 ressply.2 H = R 𝑠 T
3 ressply.3 U = Poly 1 H
4 ressply.4 B = Base U
5 ressply.5 φ T SubRing R
6 ressply10g.6 Z = 0 S
7 eqid algSc S = algSc S
8 eqid algSc U = algSc U
9 1 7 2 3 5 8 subrg1ascl φ algSc U = algSc S T
10 9 fveq1d φ algSc U 0 H = algSc S T 0 H
11 eqid 0 H = 0 H
12 eqid 0 U = 0 U
13 2 subrgring T SubRing R H Ring
14 5 13 syl φ H Ring
15 3 8 11 12 14 ply1ascl0 φ algSc U 0 H = 0 U
16 eqid 0 R = 0 R
17 2 16 subrg0 T SubRing R 0 R = 0 H
18 5 17 syl φ 0 R = 0 H
19 subrgsubg T SubRing R T SubGrp R
20 16 subg0cl T SubGrp R 0 R T
21 5 19 20 3syl φ 0 R T
22 18 21 eqeltrrd φ 0 H T
23 22 fvresd φ algSc S T 0 H = algSc S 0 H
24 10 15 23 3eqtr3d φ 0 U = algSc S 0 H
25 18 fveq2d φ algSc S 0 R = algSc S 0 H
26 subrgrcl T SubRing R R Ring
27 5 26 syl φ R Ring
28 1 7 16 6 27 ply1ascl0 φ algSc S 0 R = Z
29 24 25 28 3eqtr2rd φ Z = 0 U