Metamath Proof Explorer


Theorem ressply1add

Description: A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressply1.s S = Poly 1 R
ressply1.h H = R 𝑠 T
ressply1.u U = Poly 1 H
ressply1.b B = Base U
ressply1.2 φ T SubRing R
ressply1.p P = S 𝑠 B
Assertion ressply1add φ X B Y B X + U Y = X + P Y

Proof

Step Hyp Ref Expression
1 ressply1.s S = Poly 1 R
2 ressply1.h H = R 𝑠 T
3 ressply1.u U = Poly 1 H
4 ressply1.b B = Base U
5 ressply1.2 φ T SubRing R
6 ressply1.p P = S 𝑠 B
7 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
8 eqid 1 𝑜 mPoly H = 1 𝑜 mPoly H
9 eqid PwSer 1 H = PwSer 1 H
10 3 9 4 ply1bas B = Base 1 𝑜 mPoly H
11 1on 1 𝑜 On
12 11 a1i φ 1 𝑜 On
13 eqid 1 𝑜 mPoly R 𝑠 B = 1 𝑜 mPoly R 𝑠 B
14 7 2 8 10 12 5 13 ressmpladd φ X B Y B X + 1 𝑜 mPoly H Y = X + 1 𝑜 mPoly R 𝑠 B Y
15 eqid + U = + U
16 3 8 15 ply1plusg + U = + 1 𝑜 mPoly H
17 16 oveqi X + U Y = X + 1 𝑜 mPoly H Y
18 eqid + S = + S
19 1 7 18 ply1plusg + S = + 1 𝑜 mPoly R
20 4 fvexi B V
21 6 18 ressplusg B V + S = + P
22 20 21 ax-mp + S = + P
23 eqid + 1 𝑜 mPoly R = + 1 𝑜 mPoly R
24 13 23 ressplusg B V + 1 𝑜 mPoly R = + 1 𝑜 mPoly R 𝑠 B
25 20 24 ax-mp + 1 𝑜 mPoly R = + 1 𝑜 mPoly R 𝑠 B
26 19 22 25 3eqtr3i + P = + 1 𝑜 mPoly R 𝑠 B
27 26 oveqi X + P Y = X + 1 𝑜 mPoly R 𝑠 B Y
28 14 17 27 3eqtr4g φ X B Y B X + U Y = X + P Y