Metamath Proof Explorer


Theorem ressply1evl

Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025)

Ref Expression
Hypotheses ressply1evl2.q Q = S evalSub 1 R
ressply1evl2.k K = Base S
ressply1evl2.w W = Poly 1 U
ressply1evl2.u U = S 𝑠 R
ressply1evl2.b B = Base W
ressply1evl.e E = eval 1 S
ressply1evl.s φ S CRing
ressply1evl.r φ R SubRing S
Assertion ressply1evl φ Q = E B

Proof

Step Hyp Ref Expression
1 ressply1evl2.q Q = S evalSub 1 R
2 ressply1evl2.k K = Base S
3 ressply1evl2.w W = Poly 1 U
4 ressply1evl2.u U = S 𝑠 R
5 ressply1evl2.b B = Base W
6 ressply1evl.e E = eval 1 S
7 ressply1evl.s φ S CRing
8 ressply1evl.r φ R SubRing S
9 6 2 evl1fval1 E = S evalSub 1 K
10 eqid Poly 1 S 𝑠 K = Poly 1 S 𝑠 K
11 eqid S 𝑠 K = S 𝑠 K
12 eqid Base Poly 1 S 𝑠 K = Base Poly 1 S 𝑠 K
13 7 adantr φ m B S CRing
14 7 crngringd φ S Ring
15 2 subrgid S Ring K SubRing S
16 14 15 syl φ K SubRing S
17 16 adantr φ m B K SubRing S
18 eqid Poly 1 S = Poly 1 S
19 eqid PwSer 1 U = PwSer 1 U
20 eqid Base PwSer 1 U = Base PwSer 1 U
21 eqid Base Poly 1 S = Base Poly 1 S
22 18 4 3 5 8 19 20 21 ressply1bas2 φ B = Base PwSer 1 U Base Poly 1 S
23 inss2 Base PwSer 1 U Base Poly 1 S Base Poly 1 S
24 22 23 eqsstrdi φ B Base Poly 1 S
25 2 ressid S CRing S 𝑠 K = S
26 7 25 syl φ S 𝑠 K = S
27 26 fveq2d φ Poly 1 S 𝑠 K = Poly 1 S
28 27 fveq2d φ Base Poly 1 S 𝑠 K = Base Poly 1 S
29 24 28 sseqtrrd φ B Base Poly 1 S 𝑠 K
30 29 sselda φ m B m Base Poly 1 S 𝑠 K
31 eqid S = S
32 eqid mulGrp S = mulGrp S
33 eqid coe 1 m = coe 1 m
34 9 2 10 11 12 13 17 30 31 32 33 evls1fpws φ m B E m = x K S k 0 coe 1 m k S k mulGrp S x
35 8 adantr φ m B R SubRing S
36 simpr φ m B m B
37 1 2 3 4 5 13 35 36 31 32 33 evls1fpws φ m B Q m = x K S k 0 coe 1 m k S k mulGrp S x
38 34 37 eqtr4d φ m B E m = Q m
39 38 ralrimiva φ m B E m = Q m
40 eqid S 𝑠 K = S 𝑠 K
41 6 18 40 2 evl1rhm S CRing E Poly 1 S RingHom S 𝑠 K
42 eqid Base S 𝑠 K = Base S 𝑠 K
43 21 42 rhmf E Poly 1 S RingHom S 𝑠 K E : Base Poly 1 S Base S 𝑠 K
44 7 41 43 3syl φ E : Base Poly 1 S Base S 𝑠 K
45 44 ffnd φ E Fn Base Poly 1 S
46 1 2 40 4 3 evls1rhm S CRing R SubRing S Q W RingHom S 𝑠 K
47 7 8 46 syl2anc φ Q W RingHom S 𝑠 K
48 5 42 rhmf Q W RingHom S 𝑠 K Q : B Base S 𝑠 K
49 47 48 syl φ Q : B Base S 𝑠 K
50 49 ffnd φ Q Fn B
51 fvreseq1 E Fn Base Poly 1 S Q Fn B B Base Poly 1 S E B = Q m B E m = Q m
52 45 50 24 51 syl21anc φ E B = Q m B E m = Q m
53 39 52 mpbird φ E B = Q
54 53 eqcomd φ Q = E B