Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
|
2 |
|
ressply.2 |
|
3 |
|
ressply.3 |
|
4 |
|
ressply.4 |
|
5 |
|
ressply.5 |
|
6 |
|
ressply1.1 |
|
7 |
|
ressply1invg.1 |
|
8 |
1 2 3 4 5 6
|
ressply1bas |
|
9 |
1 2 3 4 5 6
|
ressply1add |
|
10 |
9
|
anassrs |
|
11 |
7 10
|
mpidan |
|
12 |
|
eqid |
|
13 |
1 2 3 4 5 12
|
ressply10g |
|
14 |
1 2 3 4
|
subrgply1 |
|
15 |
5 14
|
syl |
|
16 |
|
subrgrcl |
|
17 |
|
ringmnd |
|
18 |
15 16 17
|
3syl |
|
19 |
|
subrgsubg |
|
20 |
12
|
subg0cl |
|
21 |
15 19 20
|
3syl |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
1 2 3 4 5 22 23 24
|
ressply1bas2 |
|
26 |
|
inss2 |
|
27 |
25 26
|
eqsstrdi |
|
28 |
6 24 12
|
ress0g |
|
29 |
18 21 27 28
|
syl3anc |
|
30 |
13 29
|
eqtr3d |
|
31 |
30
|
adantr |
|
32 |
11 31
|
eqeq12d |
|
33 |
8 32
|
riotaeqbidva |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
4 34 35 36
|
grpinvval |
|
38 |
7 37
|
syl |
|
39 |
7 8
|
eleqtrd |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
40 41 42 43
|
grpinvval |
|
45 |
39 44
|
syl |
|
46 |
33 38 45
|
3eqtr4d |
|