Metamath Proof Explorer


Theorem ressply1invg

Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025)

Ref Expression
Hypotheses ressply.1 S = Poly 1 R
ressply.2 H = R 𝑠 T
ressply.3 U = Poly 1 H
ressply.4 B = Base U
ressply.5 φ T SubRing R
ressply1.1 P = S 𝑠 B
ressply1invg.1 φ X B
Assertion ressply1invg φ inv g U X = inv g P X

Proof

Step Hyp Ref Expression
1 ressply.1 S = Poly 1 R
2 ressply.2 H = R 𝑠 T
3 ressply.3 U = Poly 1 H
4 ressply.4 B = Base U
5 ressply.5 φ T SubRing R
6 ressply1.1 P = S 𝑠 B
7 ressply1invg.1 φ X B
8 1 2 3 4 5 6 ressply1bas φ B = Base P
9 1 2 3 4 5 6 ressply1add φ y B X B y + U X = y + P X
10 9 anassrs φ y B X B y + U X = y + P X
11 7 10 mpidan φ y B y + U X = y + P X
12 eqid 0 S = 0 S
13 1 2 3 4 5 12 ressply10g φ 0 S = 0 U
14 1 2 3 4 subrgply1 T SubRing R B SubRing S
15 5 14 syl φ B SubRing S
16 subrgrcl B SubRing S S Ring
17 ringmnd S Ring S Mnd
18 15 16 17 3syl φ S Mnd
19 subrgsubg B SubRing S B SubGrp S
20 12 subg0cl B SubGrp S 0 S B
21 15 19 20 3syl φ 0 S B
22 eqid PwSer 1 H = PwSer 1 H
23 eqid Base PwSer 1 H = Base PwSer 1 H
24 eqid Base S = Base S
25 1 2 3 4 5 22 23 24 ressply1bas2 φ B = Base PwSer 1 H Base S
26 inss2 Base PwSer 1 H Base S Base S
27 25 26 eqsstrdi φ B Base S
28 6 24 12 ress0g S Mnd 0 S B B Base S 0 S = 0 P
29 18 21 27 28 syl3anc φ 0 S = 0 P
30 13 29 eqtr3d φ 0 U = 0 P
31 30 adantr φ y B 0 U = 0 P
32 11 31 eqeq12d φ y B y + U X = 0 U y + P X = 0 P
33 8 32 riotaeqbidva φ ι y B | y + U X = 0 U = ι y Base P | y + P X = 0 P
34 eqid + U = + U
35 eqid 0 U = 0 U
36 eqid inv g U = inv g U
37 4 34 35 36 grpinvval X B inv g U X = ι y B | y + U X = 0 U
38 7 37 syl φ inv g U X = ι y B | y + U X = 0 U
39 7 8 eleqtrd φ X Base P
40 eqid Base P = Base P
41 eqid + P = + P
42 eqid 0 P = 0 P
43 eqid inv g P = inv g P
44 40 41 42 43 grpinvval X Base P inv g P X = ι y Base P | y + P X = 0 P
45 39 44 syl φ inv g P X = ι y Base P | y + P X = 0 P
46 33 38 45 3eqtr4d φ inv g U X = inv g P X