Metamath Proof Explorer


Theorem ressply1mon1p

Description: The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025)

Ref Expression
Hypotheses ressply.1 S = Poly 1 R
ressply.2 H = R 𝑠 T
ressply.3 U = Poly 1 H
ressply.4 B = Base U
ressply.5 φ T SubRing R
ressply1mon1p.m M = Monic 1p R
ressply1mon1p.n N = Monic 1p H
Assertion ressply1mon1p φ N = B M

Proof

Step Hyp Ref Expression
1 ressply.1 S = Poly 1 R
2 ressply.2 H = R 𝑠 T
3 ressply.3 U = Poly 1 H
4 ressply.4 B = Base U
5 ressply.5 φ T SubRing R
6 ressply1mon1p.m M = Monic 1p R
7 ressply1mon1p.n N = Monic 1p H
8 eqid Base S = Base S
9 eqid 0 S = 0 S
10 eqid deg 1 R = deg 1 R
11 eqid 1 R = 1 R
12 1 8 9 10 6 11 ismon1p p M p Base S p 0 S coe 1 p deg 1 R p = 1 R
13 12 anbi2i p B p M p B p Base S p 0 S coe 1 p deg 1 R p = 1 R
14 eqid S 𝑠 B = S 𝑠 B
15 1 2 3 4 5 14 ressply1bas φ B = Base S 𝑠 B
16 14 8 ressbasss Base S 𝑠 B Base S
17 15 16 eqsstrdi φ B Base S
18 17 sseld φ p B p Base S
19 18 pm4.71d φ p B p B p Base S
20 19 anbi1d φ p B p 0 S coe 1 p deg 1 R p = 1 R p B p Base S p 0 S coe 1 p deg 1 R p = 1 R
21 13an22anass p B p Base S p 0 S coe 1 p deg 1 R p = 1 R p B p Base S p 0 S coe 1 p deg 1 R p = 1 R
22 20 21 bitr4di φ p B p 0 S coe 1 p deg 1 R p = 1 R p B p Base S p 0 S coe 1 p deg 1 R p = 1 R
23 1 2 3 4 5 9 ressply10g φ 0 S = 0 U
24 23 neeq2d φ p 0 S p 0 U
25 24 adantr φ p B p 0 S p 0 U
26 simpr φ p B p B
27 5 adantr φ p B T SubRing R
28 2 10 3 4 26 27 ressdeg1 φ p B deg 1 R p = deg 1 H p
29 28 fveq2d φ p B coe 1 p deg 1 R p = coe 1 p deg 1 H p
30 2 11 subrg1 T SubRing R 1 R = 1 H
31 5 30 syl φ 1 R = 1 H
32 31 adantr φ p B 1 R = 1 H
33 29 32 eqeq12d φ p B coe 1 p deg 1 R p = 1 R coe 1 p deg 1 H p = 1 H
34 25 33 anbi12d φ p B p 0 S coe 1 p deg 1 R p = 1 R p 0 U coe 1 p deg 1 H p = 1 H
35 34 pm5.32da φ p B p 0 S coe 1 p deg 1 R p = 1 R p B p 0 U coe 1 p deg 1 H p = 1 H
36 3anass p B p 0 U coe 1 p deg 1 H p = 1 H p B p 0 U coe 1 p deg 1 H p = 1 H
37 35 36 bitr4di φ p B p 0 S coe 1 p deg 1 R p = 1 R p B p 0 U coe 1 p deg 1 H p = 1 H
38 22 37 bitr3d φ p B p Base S p 0 S coe 1 p deg 1 R p = 1 R p B p 0 U coe 1 p deg 1 H p = 1 H
39 13 38 bitr2id φ p B p 0 U coe 1 p deg 1 H p = 1 H p B p M
40 eqid 0 U = 0 U
41 eqid deg 1 H = deg 1 H
42 eqid 1 H = 1 H
43 3 4 40 41 7 42 ismon1p p N p B p 0 U coe 1 p deg 1 H p = 1 H
44 elin p B M p B p M
45 39 43 44 3bitr4g φ p N p B M
46 45 eqrdv φ N = B M