Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resspsr.s | |
|
resspsr.h | |
||
resspsr.u | |
||
resspsr.b | |
||
resspsr.p | |
||
resspsr.2 | |
||
Assertion | resspsradd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resspsr.s | |
|
2 | resspsr.h | |
|
3 | resspsr.u | |
|
4 | resspsr.b | |
|
5 | resspsr.p | |
|
6 | resspsr.2 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | simprl | |
|
10 | simprr | |
|
11 | 3 4 7 8 9 10 | psradd | |
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | fvex | |
|
16 | 2 | subrgbas | |
17 | 6 16 | syl | |
18 | eqid | |
|
19 | 18 | subrgss | |
20 | 6 19 | syl | |
21 | 17 20 | eqsstrrd | |
22 | mapss | |
|
23 | 15 21 22 | sylancr | |
24 | 23 | adantr | |
25 | eqid | |
|
26 | eqid | |
|
27 | reldmpsr | |
|
28 | 27 3 4 | elbasov | |
29 | 28 | ad2antrl | |
30 | 29 | simpld | |
31 | 3 25 26 4 30 | psrbas | |
32 | 1 18 26 12 30 | psrbas | |
33 | 24 31 32 | 3sstr4d | |
34 | 33 9 | sseldd | |
35 | 33 10 | sseldd | |
36 | 1 12 13 14 34 35 | psradd | |
37 | 2 13 | ressplusg | |
38 | 6 37 | syl | |
39 | 38 | adantr | |
40 | 39 | ofeqd | |
41 | 40 | oveqd | |
42 | 36 41 | eqtrd | |
43 | 4 | fvexi | |
44 | 5 14 | ressplusg | |
45 | 43 44 | mp1i | |
46 | 45 | oveqd | |
47 | 11 42 46 | 3eqtr2d | |