Metamath Proof Explorer


Theorem resspsradd

Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses resspsr.s S=ImPwSerR
resspsr.h H=R𝑠T
resspsr.u U=ImPwSerH
resspsr.b B=BaseU
resspsr.p P=S𝑠B
resspsr.2 φTSubRingR
Assertion resspsradd φXBYBX+UY=X+PY

Proof

Step Hyp Ref Expression
1 resspsr.s S=ImPwSerR
2 resspsr.h H=R𝑠T
3 resspsr.u U=ImPwSerH
4 resspsr.b B=BaseU
5 resspsr.p P=S𝑠B
6 resspsr.2 φTSubRingR
7 eqid +H=+H
8 eqid +U=+U
9 simprl φXBYBXB
10 simprr φXBYBYB
11 3 4 7 8 9 10 psradd φXBYBX+UY=X+HfY
12 eqid BaseS=BaseS
13 eqid +R=+R
14 eqid +S=+S
15 fvex BaseRV
16 2 subrgbas TSubRingRT=BaseH
17 6 16 syl φT=BaseH
18 eqid BaseR=BaseR
19 18 subrgss TSubRingRTBaseR
20 6 19 syl φTBaseR
21 17 20 eqsstrrd φBaseHBaseR
22 mapss BaseRVBaseHBaseRBaseHf0I|f-1FinBaseRf0I|f-1Fin
23 15 21 22 sylancr φBaseHf0I|f-1FinBaseRf0I|f-1Fin
24 23 adantr φXBYBBaseHf0I|f-1FinBaseRf0I|f-1Fin
25 eqid BaseH=BaseH
26 eqid f0I|f-1Fin=f0I|f-1Fin
27 reldmpsr ReldommPwSer
28 27 3 4 elbasov XBIVHV
29 28 ad2antrl φXBYBIVHV
30 29 simpld φXBYBIV
31 3 25 26 4 30 psrbas φXBYBB=BaseHf0I|f-1Fin
32 1 18 26 12 30 psrbas φXBYBBaseS=BaseRf0I|f-1Fin
33 24 31 32 3sstr4d φXBYBBBaseS
34 33 9 sseldd φXBYBXBaseS
35 33 10 sseldd φXBYBYBaseS
36 1 12 13 14 34 35 psradd φXBYBX+SY=X+RfY
37 2 13 ressplusg TSubRingR+R=+H
38 6 37 syl φ+R=+H
39 38 adantr φXBYB+R=+H
40 39 ofeqd φXBYBf+R=f+H
41 40 oveqd φXBYBX+RfY=X+HfY
42 36 41 eqtrd φXBYBX+SY=X+HfY
43 4 fvexi BV
44 5 14 ressplusg BV+S=+P
45 43 44 mp1i φXBYB+S=+P
46 45 oveqd φXBYBX+SY=X+PY
47 11 42 46 3eqtr2d φXBYBX+UY=X+PY