Metamath Proof Explorer


Theorem resspsrvsca

Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses resspsr.s S = I mPwSer R
resspsr.h H = R 𝑠 T
resspsr.u U = I mPwSer H
resspsr.b B = Base U
resspsr.p P = S 𝑠 B
resspsr.2 φ T SubRing R
Assertion resspsrvsca φ X T Y B X U Y = X P Y

Proof

Step Hyp Ref Expression
1 resspsr.s S = I mPwSer R
2 resspsr.h H = R 𝑠 T
3 resspsr.u U = I mPwSer H
4 resspsr.b B = Base U
5 resspsr.p P = S 𝑠 B
6 resspsr.2 φ T SubRing R
7 eqid U = U
8 eqid Base H = Base H
9 eqid H = H
10 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
11 simprl φ X T Y B X T
12 6 adantr φ X T Y B T SubRing R
13 2 subrgbas T SubRing R T = Base H
14 12 13 syl φ X T Y B T = Base H
15 11 14 eleqtrd φ X T Y B X Base H
16 simprr φ X T Y B Y B
17 3 7 8 4 9 10 15 16 psrvsca φ X T Y B X U Y = f 0 I | f -1 Fin × X H f Y
18 eqid S = S
19 eqid Base R = Base R
20 eqid Base S = Base S
21 eqid R = R
22 19 subrgss T SubRing R T Base R
23 12 22 syl φ X T Y B T Base R
24 23 11 sseldd φ X T Y B X Base R
25 1 2 3 4 5 6 resspsrbas φ B = Base P
26 5 20 ressbasss Base P Base S
27 25 26 eqsstrdi φ B Base S
28 27 adantr φ X T Y B B Base S
29 28 16 sseldd φ X T Y B Y Base S
30 1 18 19 20 21 10 24 29 psrvsca φ X T Y B X S Y = f 0 I | f -1 Fin × X R f Y
31 2 21 ressmulr T SubRing R R = H
32 ofeq R = H f R = f H
33 12 31 32 3syl φ X T Y B f R = f H
34 33 oveqd φ X T Y B f 0 I | f -1 Fin × X R f Y = f 0 I | f -1 Fin × X H f Y
35 30 34 eqtrd φ X T Y B X S Y = f 0 I | f -1 Fin × X H f Y
36 4 fvexi B V
37 5 18 ressvsca B V S = P
38 36 37 mp1i φ X T Y B S = P
39 38 oveqd φ X T Y B X S Y = X P Y
40 17 35 39 3eqtr2d φ X T Y B X U Y = X P Y