| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s |  | 
						
							| 2 |  | resspsr.h |  | 
						
							| 3 |  | resspsr.u |  | 
						
							| 4 |  | resspsr.b |  | 
						
							| 5 |  | resspsr.p |  | 
						
							| 6 |  | resspsr.2 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 | 6 | adantr |  | 
						
							| 13 | 2 | subrgbas |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 11 14 | eleqtrd |  | 
						
							| 16 |  | simprr |  | 
						
							| 17 | 3 7 8 4 9 10 15 16 | psrvsca |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 19 | subrgss |  | 
						
							| 23 | 12 22 | syl |  | 
						
							| 24 | 23 11 | sseldd |  | 
						
							| 25 | 1 2 3 4 5 6 | resspsrbas |  | 
						
							| 26 | 5 20 | ressbasss |  | 
						
							| 27 | 25 26 | eqsstrdi |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 28 16 | sseldd |  | 
						
							| 30 | 1 18 19 20 21 10 24 29 | psrvsca |  | 
						
							| 31 | 2 21 | ressmulr |  | 
						
							| 32 |  | ofeq |  | 
						
							| 33 | 12 31 32 | 3syl |  | 
						
							| 34 | 33 | oveqd |  | 
						
							| 35 | 30 34 | eqtrd |  | 
						
							| 36 | 4 | fvexi |  | 
						
							| 37 | 5 18 | ressvsca |  | 
						
							| 38 | 36 37 | mp1i |  | 
						
							| 39 | 38 | oveqd |  | 
						
							| 40 | 17 35 39 | 3eqtr2d |  |