Metamath Proof Explorer


Theorem ressress

Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014) (Proof shortened by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion ressress A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B

Proof

Step Hyp Ref Expression
1 simplr ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y ¬ Base W A
2 simpr1 ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W V
3 simpr2 ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y A X
4 eqid W 𝑠 A = W 𝑠 A
5 eqid Base W = Base W
6 4 5 ressval2 ¬ Base W A W V A X W 𝑠 A = W sSet Base ndx A Base W
7 1 2 3 6 syl3anc ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A = W sSet Base ndx A Base W
8 inass A B Base W = A B Base W
9 in12 A B Base W = B A Base W
10 8 9 eqtri A B Base W = B A Base W
11 4 5 ressbas A X A Base W = Base W 𝑠 A
12 3 11 syl ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y A Base W = Base W 𝑠 A
13 12 ineq2d ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y B A Base W = B Base W 𝑠 A
14 10 13 eqtr2id ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y B Base W 𝑠 A = A B Base W
15 14 opeq2d ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y Base ndx B Base W 𝑠 A = Base ndx A B Base W
16 7 15 oveq12d ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A sSet Base ndx B Base W 𝑠 A = W sSet Base ndx A Base W sSet Base ndx A B Base W
17 fvex Base W V
18 17 inex2 A B Base W V
19 setsabs W V A B Base W V W sSet Base ndx A Base W sSet Base ndx A B Base W = W sSet Base ndx A B Base W
20 2 18 19 sylancl ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W sSet Base ndx A Base W sSet Base ndx A B Base W = W sSet Base ndx A B Base W
21 16 20 eqtrd ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A sSet Base ndx B Base W 𝑠 A = W sSet Base ndx A B Base W
22 simpll ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y ¬ Base W 𝑠 A B
23 ovexd ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A V
24 simpr3 ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y B Y
25 eqid W 𝑠 A 𝑠 B = W 𝑠 A 𝑠 B
26 eqid Base W 𝑠 A = Base W 𝑠 A
27 25 26 ressval2 ¬ Base W 𝑠 A B W 𝑠 A V B Y W 𝑠 A 𝑠 B = W 𝑠 A sSet Base ndx B Base W 𝑠 A
28 22 23 24 27 syl3anc ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A sSet Base ndx B Base W 𝑠 A
29 inss1 A B A
30 sstr Base W A B A B A Base W A
31 29 30 mpan2 Base W A B Base W A
32 1 31 nsyl ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y ¬ Base W A B
33 inex1g A X A B V
34 3 33 syl ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y A B V
35 eqid W 𝑠 A B = W 𝑠 A B
36 35 5 ressval2 ¬ Base W A B W V A B V W 𝑠 A B = W sSet Base ndx A B Base W
37 32 2 34 36 syl3anc ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A B = W sSet Base ndx A B Base W
38 21 28 37 3eqtr4d ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
39 38 exp31 ¬ Base W 𝑠 A B ¬ Base W A W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
40 ovex W 𝑠 A V
41 25 26 ressid2 Base W 𝑠 A B W 𝑠 A V B Y W 𝑠 A 𝑠 B = W 𝑠 A
42 40 41 mp3an2 Base W 𝑠 A B B Y W 𝑠 A 𝑠 B = W 𝑠 A
43 42 3ad2antr3 Base W 𝑠 A B W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A
44 in32 A B Base W = A Base W B
45 simpr2 Base W 𝑠 A B W V A X B Y A X
46 45 11 syl Base W 𝑠 A B W V A X B Y A Base W = Base W 𝑠 A
47 simpl Base W 𝑠 A B W V A X B Y Base W 𝑠 A B
48 46 47 eqsstrd Base W 𝑠 A B W V A X B Y A Base W B
49 df-ss A Base W B A Base W B = A Base W
50 48 49 sylib Base W 𝑠 A B W V A X B Y A Base W B = A Base W
51 44 50 eqtr2id Base W 𝑠 A B W V A X B Y A Base W = A B Base W
52 51 oveq2d Base W 𝑠 A B W V A X B Y W 𝑠 A Base W = W 𝑠 A B Base W
53 5 ressinbas A X W 𝑠 A = W 𝑠 A Base W
54 45 53 syl Base W 𝑠 A B W V A X B Y W 𝑠 A = W 𝑠 A Base W
55 5 ressinbas A B V W 𝑠 A B = W 𝑠 A B Base W
56 45 33 55 3syl Base W 𝑠 A B W V A X B Y W 𝑠 A B = W 𝑠 A B Base W
57 52 54 56 3eqtr4d Base W 𝑠 A B W V A X B Y W 𝑠 A = W 𝑠 A B
58 43 57 eqtrd Base W 𝑠 A B W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
59 58 ex Base W 𝑠 A B W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
60 4 5 ressid2 Base W A W V A X W 𝑠 A = W
61 60 3adant3r3 Base W A W V A X B Y W 𝑠 A = W
62 61 oveq1d Base W A W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 B
63 inss2 B Base W Base W
64 simpl Base W A W V A X B Y Base W A
65 63 64 sstrid Base W A W V A X B Y B Base W A
66 sseqin2 B Base W A A B Base W = B Base W
67 65 66 sylib Base W A W V A X B Y A B Base W = B Base W
68 8 67 eqtr2id Base W A W V A X B Y B Base W = A B Base W
69 68 oveq2d Base W A W V A X B Y W 𝑠 B Base W = W 𝑠 A B Base W
70 simpr3 Base W A W V A X B Y B Y
71 5 ressinbas B Y W 𝑠 B = W 𝑠 B Base W
72 70 71 syl Base W A W V A X B Y W 𝑠 B = W 𝑠 B Base W
73 simpr2 Base W A W V A X B Y A X
74 73 33 55 3syl Base W A W V A X B Y W 𝑠 A B = W 𝑠 A B Base W
75 69 72 74 3eqtr4d Base W A W V A X B Y W 𝑠 B = W 𝑠 A B
76 62 75 eqtrd Base W A W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
77 76 ex Base W A W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
78 39 59 77 pm2.61ii W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
79 78 3expib W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
80 ress0 𝑠 B =
81 reldmress Rel dom 𝑠
82 81 ovprc1 ¬ W V W 𝑠 A =
83 82 oveq1d ¬ W V W 𝑠 A 𝑠 B = 𝑠 B
84 81 ovprc1 ¬ W V W 𝑠 A B =
85 80 83 84 3eqtr4a ¬ W V W 𝑠 A 𝑠 B = W 𝑠 A B
86 85 a1d ¬ W V A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B
87 79 86 pm2.61i A X B Y W 𝑠 A 𝑠 B = W 𝑠 A B