Metamath Proof Explorer


Theorem resssca

Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses resssca.1 H = G 𝑠 A
resssca.2 F = Scalar G
Assertion resssca A V F = Scalar H

Proof

Step Hyp Ref Expression
1 resssca.1 H = G 𝑠 A
2 resssca.2 F = Scalar G
3 scaid Scalar = Slot Scalar ndx
4 scandxnbasendx Scalar ndx Base ndx
5 1 2 3 4 resseqnbas A V F = Scalar H