Metamath Proof Explorer


Theorem resssra

Description: The subring algebra of a restricted structure is the restriction of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses resssra.a A = Base R
resssra.s S = R 𝑠 B
resssra.b φ B A
resssra.c φ C B
resssra.r φ R V
Assertion resssra φ subringAlg S C = subringAlg R C 𝑠 B

Proof

Step Hyp Ref Expression
1 resssra.a A = Base R
2 resssra.s S = R 𝑠 B
3 resssra.b φ B A
4 resssra.c φ C B
5 resssra.r φ R V
6 eqidd φ subringAlg R C = subringAlg R C
7 4 3 sstrd φ C A
8 7 1 sseqtrdi φ C Base R
9 6 8 srabase φ Base R = Base subringAlg R C
10 1 9 eqtrid φ A = Base subringAlg R C
11 10 oveq2d φ subringAlg R C 𝑠 A = subringAlg R C 𝑠 Base subringAlg R C
12 11 adantr φ A B subringAlg R C 𝑠 A = subringAlg R C 𝑠 Base subringAlg R C
13 simpr φ A B A B
14 3 adantr φ A B B A
15 13 14 eqssd φ A B A = B
16 15 oveq2d φ A B subringAlg R C 𝑠 A = subringAlg R C 𝑠 B
17 fvex subringAlg R C V
18 eqid Base subringAlg R C = Base subringAlg R C
19 18 ressid subringAlg R C V subringAlg R C 𝑠 Base subringAlg R C = subringAlg R C
20 17 19 mp1i φ A B subringAlg R C 𝑠 Base subringAlg R C = subringAlg R C
21 12 16 20 3eqtr3d φ A B subringAlg R C 𝑠 B = subringAlg R C
22 1 oveq2i R 𝑠 A = R 𝑠 Base R
23 5 elexd φ R V
24 eqid Base R = Base R
25 24 ressid R V R 𝑠 Base R = R
26 23 25 syl φ R 𝑠 Base R = R
27 22 26 eqtrid φ R 𝑠 A = R
28 27 adantr φ A B R 𝑠 A = R
29 15 oveq2d φ A B R 𝑠 A = R 𝑠 B
30 29 2 eqtr4di φ A B R 𝑠 A = S
31 28 30 eqtr3d φ A B R = S
32 31 fveq2d φ A B subringAlg R = subringAlg S
33 32 fveq1d φ A B subringAlg R C = subringAlg S C
34 21 33 eqtr2d φ A B subringAlg S C = subringAlg R C 𝑠 B
35 simpr φ ¬ A B ¬ A B
36 23 adantr φ ¬ A B R V
37 1 fvexi A V
38 37 a1i φ A V
39 38 3 ssexd φ B V
40 39 adantr φ ¬ A B B V
41 2 1 ressval2 ¬ A B R V B V S = R sSet Base ndx B A
42 35 36 40 41 syl3anc φ ¬ A B S = R sSet Base ndx B A
43 dfss2 B A B A = B
44 3 43 sylib φ B A = B
45 44 opeq2d φ Base ndx B A = Base ndx B
46 45 oveq2d φ R sSet Base ndx B A = R sSet Base ndx B
47 46 adantr φ ¬ A B R sSet Base ndx B A = R sSet Base ndx B
48 42 47 eqtrd φ ¬ A B S = R sSet Base ndx B
49 2 oveq1i S 𝑠 C = R 𝑠 B 𝑠 C
50 ressabs B V C B R 𝑠 B 𝑠 C = R 𝑠 C
51 39 4 50 syl2anc φ R 𝑠 B 𝑠 C = R 𝑠 C
52 49 51 eqtrid φ S 𝑠 C = R 𝑠 C
53 52 opeq2d φ Scalar ndx S 𝑠 C = Scalar ndx R 𝑠 C
54 53 adantr φ ¬ A B Scalar ndx S 𝑠 C = Scalar ndx R 𝑠 C
55 48 54 oveq12d φ ¬ A B S sSet Scalar ndx S 𝑠 C = R sSet Base ndx B sSet Scalar ndx R 𝑠 C
56 scandxnbasendx Scalar ndx Base ndx
57 56 a1i φ Scalar ndx Base ndx
58 ovexd φ R 𝑠 C V
59 fvex Scalar ndx V
60 fvex Base ndx V
61 59 60 setscom R V Scalar ndx Base ndx R 𝑠 C V B V R sSet Scalar ndx R 𝑠 C sSet Base ndx B = R sSet Base ndx B sSet Scalar ndx R 𝑠 C
62 23 57 58 39 61 syl22anc φ R sSet Scalar ndx R 𝑠 C sSet Base ndx B = R sSet Base ndx B sSet Scalar ndx R 𝑠 C
63 62 adantr φ ¬ A B R sSet Scalar ndx R 𝑠 C sSet Base ndx B = R sSet Base ndx B sSet Scalar ndx R 𝑠 C
64 55 63 eqtr4d φ ¬ A B S sSet Scalar ndx S 𝑠 C = R sSet Scalar ndx R 𝑠 C sSet Base ndx B
65 eqid R = R
66 2 65 ressmulr B V R = S
67 39 66 syl φ R = S
68 67 eqcomd φ S = R
69 68 opeq2d φ ndx S = ndx R
70 69 adantr φ ¬ A B ndx S = ndx R
71 64 70 oveq12d φ ¬ A B S sSet Scalar ndx S 𝑠 C sSet ndx S = R sSet Scalar ndx R 𝑠 C sSet Base ndx B sSet ndx R
72 ovexd φ R sSet Scalar ndx R 𝑠 C V
73 vscandxnbasendx ndx Base ndx
74 73 a1i φ ndx Base ndx
75 fvexd φ R V
76 fvex ndx V
77 76 60 setscom R sSet Scalar ndx R 𝑠 C V ndx Base ndx R V B V R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet Base ndx B sSet ndx R
78 72 74 75 39 77 syl22anc φ R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet Base ndx B sSet ndx R
79 78 adantr φ ¬ A B R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet Base ndx B sSet ndx R
80 71 79 eqtr4d φ ¬ A B S sSet Scalar ndx S 𝑠 C sSet ndx S = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B
81 68 opeq2d φ 𝑖 ndx S = 𝑖 ndx R
82 81 adantr φ ¬ A B 𝑖 ndx S = 𝑖 ndx R
83 80 82 oveq12d φ ¬ A B S sSet Scalar ndx S 𝑠 C sSet ndx S sSet 𝑖 ndx S = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B sSet 𝑖 ndx R
84 ovexd φ R sSet Scalar ndx R 𝑠 C sSet ndx R V
85 ipndxnbasendx 𝑖 ndx Base ndx
86 85 a1i φ 𝑖 ndx Base ndx
87 fvex 𝑖 ndx V
88 87 60 setscom R sSet Scalar ndx R 𝑠 C sSet ndx R V 𝑖 ndx Base ndx R V B V R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B sSet 𝑖 ndx R
89 84 86 75 39 88 syl22anc φ R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B sSet 𝑖 ndx R
90 89 adantr φ ¬ A B R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet Base ndx B sSet 𝑖 ndx R
91 83 90 eqtr4d φ ¬ A B S sSet Scalar ndx S 𝑠 C sSet ndx S sSet 𝑖 ndx S = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B
92 2 ovexi S V
93 2 1 ressbas2 B A B = Base S
94 3 93 syl φ B = Base S
95 4 94 sseqtrd φ C Base S
96 95 adantr φ ¬ A B C Base S
97 sraval S V C Base S subringAlg S C = S sSet Scalar ndx S 𝑠 C sSet ndx S sSet 𝑖 ndx S
98 92 96 97 sylancr φ ¬ A B subringAlg S C = S sSet Scalar ndx S 𝑠 C sSet ndx S sSet 𝑖 ndx S
99 10 adantr φ ¬ A B A = Base subringAlg R C
100 99 sseq1d φ ¬ A B A B Base subringAlg R C B
101 35 100 mtbid φ ¬ A B ¬ Base subringAlg R C B
102 fvexd φ ¬ A B subringAlg R C V
103 eqid subringAlg R C 𝑠 B = subringAlg R C 𝑠 B
104 103 18 ressval2 ¬ Base subringAlg R C B subringAlg R C V B V subringAlg R C 𝑠 B = subringAlg R C sSet Base ndx B Base subringAlg R C
105 101 102 40 104 syl3anc φ ¬ A B subringAlg R C 𝑠 B = subringAlg R C sSet Base ndx B Base subringAlg R C
106 10 ineq2d φ B A = B Base subringAlg R C
107 106 44 eqtr3d φ B Base subringAlg R C = B
108 107 opeq2d φ Base ndx B Base subringAlg R C = Base ndx B
109 108 oveq2d φ subringAlg R C sSet Base ndx B Base subringAlg R C = subringAlg R C sSet Base ndx B
110 109 adantr φ ¬ A B subringAlg R C sSet Base ndx B Base subringAlg R C = subringAlg R C sSet Base ndx B
111 sraval R V C Base R subringAlg R C = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R
112 5 8 111 syl2anc φ subringAlg R C = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R
113 112 oveq1d φ subringAlg R C sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B
114 113 adantr φ ¬ A B subringAlg R C sSet Base ndx B = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B
115 105 110 114 3eqtrd φ ¬ A B subringAlg R C 𝑠 B = R sSet Scalar ndx R 𝑠 C sSet ndx R sSet 𝑖 ndx R sSet Base ndx B
116 91 98 115 3eqtr4d φ ¬ A B subringAlg S C = subringAlg R C 𝑠 B
117 34 116 pm2.61dan φ subringAlg S C = subringAlg R C 𝑠 B