Metamath Proof Explorer


Theorem resssxp

Description: If the R -image of a class A is a subclass of B , then the restriction of R to A is a subset of the Cartesian product of A and B . (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion resssxp R A B R A A × B

Proof

Step Hyp Ref Expression
1 df-ima R A = ran R A
2 1 sseq1i R A B ran R A B
3 dmres dom R A = A dom R
4 inss1 A dom R A
5 3 4 eqsstri dom R A A
6 5 biantrur ran R A B dom R A A ran R A B
7 relres Rel R A
8 relssdmrn Rel R A R A dom R A × ran R A
9 7 8 ax-mp R A dom R A × ran R A
10 xpss12 dom R A A ran R A B dom R A × ran R A A × B
11 9 10 sstrid dom R A A ran R A B R A A × B
12 dmss R A A × B dom R A dom A × B
13 dmxpss dom A × B A
14 12 13 sstrdi R A A × B dom R A A
15 rnss R A A × B ran R A ran A × B
16 rnxpss ran A × B B
17 15 16 sstrdi R A A × B ran R A B
18 14 17 jca R A A × B dom R A A ran R A B
19 11 18 impbii dom R A A ran R A B R A A × B
20 2 6 19 3bitri R A B R A A × B