Metamath Proof Explorer


Theorem resstps

Description: A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resstps K TopSp A V K 𝑠 A TopSp

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid TopOpen K = TopOpen K
3 1 2 istps K TopSp TopOpen K TopOn Base K
4 resttopon2 TopOpen K TopOn Base K A V TopOpen K 𝑡 A TopOn A Base K
5 3 4 sylanb K TopSp A V TopOpen K 𝑡 A TopOn A Base K
6 eqid K 𝑠 A = K 𝑠 A
7 6 1 ressbas A V A Base K = Base K 𝑠 A
8 7 adantl K TopSp A V A Base K = Base K 𝑠 A
9 8 fveq2d K TopSp A V TopOn A Base K = TopOn Base K 𝑠 A
10 5 9 eleqtrd K TopSp A V TopOpen K 𝑡 A TopOn Base K 𝑠 A
11 eqid Base K 𝑠 A = Base K 𝑠 A
12 6 2 resstopn TopOpen K 𝑡 A = TopOpen K 𝑠 A
13 11 12 istps K 𝑠 A TopSp TopOpen K 𝑡 A TopOn Base K 𝑠 A
14 10 13 sylibr K TopSp A V K 𝑠 A TopSp