Metamath Proof Explorer


Theorem resstset

Description: TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses resstset.1 H = G 𝑠 A
resstset.2 J = TopSet G
Assertion resstset A V J = TopSet H

Proof

Step Hyp Ref Expression
1 resstset.1 H = G 𝑠 A
2 resstset.2 J = TopSet G
3 tsetid TopSet = Slot TopSet ndx
4 tsetndxnbasendx TopSet ndx Base ndx
5 1 2 3 4 resseqnbas A V J = TopSet H