Metamath Proof Explorer


Theorem ressuppfi

Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019)

Ref Expression
Hypotheses ressuppfi.b φ dom F B Fin
ressuppfi.f φ F W
ressuppfi.g φ G = F B
ressuppfi.s φ G supp Z Fin
ressuppfi.z φ Z V
Assertion ressuppfi φ F supp Z Fin

Proof

Step Hyp Ref Expression
1 ressuppfi.b φ dom F B Fin
2 ressuppfi.f φ F W
3 ressuppfi.g φ G = F B
4 ressuppfi.s φ G supp Z Fin
5 ressuppfi.z φ Z V
6 3 eqcomd φ F B = G
7 6 oveq1d φ F B supp Z = G supp Z
8 7 4 eqeltrd φ F B supp Z Fin
9 unfi F B supp Z Fin dom F B Fin supp Z F B dom F B Fin
10 8 1 9 syl2anc φ supp Z F B dom F B Fin
11 ressuppssdif F W Z V F supp Z supp Z F B dom F B
12 2 5 11 syl2anc φ F supp Z supp Z F B dom F B
13 10 12 ssfid φ F supp Z Fin