Metamath Proof Explorer


Theorem ressuppss

Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019)

Ref Expression
Assertion ressuppss F V Z W F B supp Z F supp Z

Proof

Step Hyp Ref Expression
1 elinel2 b B dom F b dom F
2 dmres dom F B = B dom F
3 1 2 eleq2s b dom F B b dom F
4 3 ad2antrl F V Z W b dom F B F B b Z b dom F
5 snssi b B b B
6 resima2 b B F B b = F b
7 5 6 syl b B F B b = F b
8 7 neeq1d b B F B b Z F b Z
9 8 biimpd b B F B b Z F b Z
10 9 adantld b B b dom F B F B b Z F b Z
11 10 adantld b B F V Z W b dom F B F B b Z F b Z
12 elin b B dom F b B b dom F
13 pm2.24 b B ¬ b B F b Z
14 13 adantr b B b dom F ¬ b B F b Z
15 12 14 sylbi b B dom F ¬ b B F b Z
16 15 2 eleq2s b dom F B ¬ b B F b Z
17 16 ad2antrl F V Z W b dom F B F B b Z ¬ b B F b Z
18 17 com12 ¬ b B F V Z W b dom F B F B b Z F b Z
19 11 18 pm2.61i F V Z W b dom F B F B b Z F b Z
20 4 19 jca F V Z W b dom F B F B b Z b dom F F b Z
21 20 ex F V Z W b dom F B F B b Z b dom F F b Z
22 21 ss2abdv F V Z W b | b dom F B F B b Z b | b dom F F b Z
23 df-rab b dom F B | F B b Z = b | b dom F B F B b Z
24 df-rab b dom F | F b Z = b | b dom F F b Z
25 22 23 24 3sstr4g F V Z W b dom F B | F B b Z b dom F | F b Z
26 resexg F V F B V
27 suppval F B V Z W F B supp Z = b dom F B | F B b Z
28 26 27 sylan F V Z W F B supp Z = b dom F B | F B b Z
29 suppval F V Z W F supp Z = b dom F | F b Z
30 25 28 29 3sstr4d F V Z W F B supp Z F supp Z