Metamath Proof Explorer


Theorem ressuppssdif

Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019)

Ref Expression
Assertion ressuppssdif F V Z W F supp Z supp Z F B dom F B

Proof

Step Hyp Ref Expression
1 eldif x z dom F | F z Z z dom F B | F B z Z x z dom F | F z Z ¬ x z dom F B | F B z Z
2 sneq z = x z = x
3 2 imaeq2d z = x F z = F x
4 3 neeq1d z = x F z Z F x Z
5 4 elrab x z dom F | F z Z x dom F F x Z
6 ianor ¬ x dom F B F B x Z ¬ x dom F B ¬ F B x Z
7 2 imaeq2d z = x F B z = F B x
8 7 neeq1d z = x F B z Z F B x Z
9 8 elrab x z dom F B | F B z Z x dom F B F B x Z
10 6 9 xchnxbir ¬ x z dom F B | F B z Z ¬ x dom F B ¬ F B x Z
11 ianor ¬ x B x dom F ¬ x B ¬ x dom F
12 dmres dom F B = B dom F
13 12 elin2 x dom F B x B x dom F
14 11 13 xchnxbir ¬ x dom F B ¬ x B ¬ x dom F
15 simpl x dom F F x Z x dom F
16 15 anim2i ¬ x B x dom F F x Z ¬ x B x dom F
17 16 ancomd ¬ x B x dom F F x Z x dom F ¬ x B
18 eldif x dom F B x dom F ¬ x B
19 17 18 sylibr ¬ x B x dom F F x Z x dom F B
20 19 ex ¬ x B x dom F F x Z x dom F B
21 pm2.24 x dom F ¬ x dom F x dom F B
22 21 adantr x dom F F x Z ¬ x dom F x dom F B
23 22 com12 ¬ x dom F x dom F F x Z x dom F B
24 20 23 jaoi ¬ x B ¬ x dom F x dom F F x Z x dom F B
25 14 24 sylbi ¬ x dom F B x dom F F x Z x dom F B
26 15 adantl ¬ F B x Z x dom F F x Z x dom F
27 snssi x B x B
28 27 adantl x dom F x B x B
29 resima2 x B F B x = F x
30 28 29 syl x dom F x B F B x = F x
31 30 eqcomd x dom F x B F x = F B x
32 31 adantr x dom F x B F B x = Z F x = F B x
33 simpr x dom F x B F B x = Z F B x = Z
34 32 33 eqtrd x dom F x B F B x = Z F x = Z
35 34 ex x dom F x B F B x = Z F x = Z
36 35 necon3d x dom F x B F x Z F B x Z
37 36 impancom x dom F F x Z x B F B x Z
38 37 con3d x dom F F x Z ¬ F B x Z ¬ x B
39 38 impcom ¬ F B x Z x dom F F x Z ¬ x B
40 26 39 eldifd ¬ F B x Z x dom F F x Z x dom F B
41 40 ex ¬ F B x Z x dom F F x Z x dom F B
42 25 41 jaoi ¬ x dom F B ¬ F B x Z x dom F F x Z x dom F B
43 42 impcom x dom F F x Z ¬ x dom F B ¬ F B x Z x dom F B
44 5 10 43 syl2anb x z dom F | F z Z ¬ x z dom F B | F B z Z x dom F B
45 1 44 sylbi x z dom F | F z Z z dom F B | F B z Z x dom F B
46 45 a1i F V Z W x z dom F | F z Z z dom F B | F B z Z x dom F B
47 46 ssrdv F V Z W z dom F | F z Z z dom F B | F B z Z dom F B
48 ssundif z dom F | F z Z z dom F B | F B z Z dom F B z dom F | F z Z z dom F B | F B z Z dom F B
49 47 48 sylibr F V Z W z dom F | F z Z z dom F B | F B z Z dom F B
50 suppval F V Z W F supp Z = z dom F | F z Z
51 resexg F V F B V
52 suppval F B V Z W F B supp Z = z dom F B | F B z Z
53 51 52 sylan F V Z W F B supp Z = z dom F B | F B z Z
54 53 uneq1d F V Z W supp Z F B dom F B = z dom F B | F B z Z dom F B
55 49 50 54 3sstr4d F V Z W F supp Z supp Z F B dom F B