Metamath Proof Explorer


Theorem ressval

Description: Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r R = W 𝑠 A
ressbas.b B = Base W
Assertion ressval W X A Y R = if B A W W sSet Base ndx A B

Proof

Step Hyp Ref Expression
1 ressbas.r R = W 𝑠 A
2 ressbas.b B = Base W
3 elex W X W V
4 elex A Y A V
5 simpl W V A V W V
6 ovex W sSet Base ndx A B V
7 ifcl W V W sSet Base ndx A B V if B A W W sSet Base ndx A B V
8 5 6 7 sylancl W V A V if B A W W sSet Base ndx A B V
9 simpl w = W a = A w = W
10 9 fveq2d w = W a = A Base w = Base W
11 10 2 eqtr4di w = W a = A Base w = B
12 simpr w = W a = A a = A
13 11 12 sseq12d w = W a = A Base w a B A
14 12 11 ineq12d w = W a = A a Base w = A B
15 14 opeq2d w = W a = A Base ndx a Base w = Base ndx A B
16 9 15 oveq12d w = W a = A w sSet Base ndx a Base w = W sSet Base ndx A B
17 13 9 16 ifbieq12d w = W a = A if Base w a w w sSet Base ndx a Base w = if B A W W sSet Base ndx A B
18 df-ress 𝑠 = w V , a V if Base w a w w sSet Base ndx a Base w
19 17 18 ovmpoga W V A V if B A W W sSet Base ndx A B V W 𝑠 A = if B A W W sSet Base ndx A B
20 8 19 mpd3an3 W V A V W 𝑠 A = if B A W W sSet Base ndx A B
21 3 4 20 syl2an W X A Y W 𝑠 A = if B A W W sSet Base ndx A B
22 1 21 syl5eq W X A Y R = if B A W W sSet Base ndx A B