Metamath Proof Explorer


Theorem ressval2

Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r R = W 𝑠 A
ressbas.b B = Base W
Assertion ressval2 ¬ B A W X A Y R = W sSet Base ndx A B

Proof

Step Hyp Ref Expression
1 ressbas.r R = W 𝑠 A
2 ressbas.b B = Base W
3 1 2 ressval W X A Y R = if B A W W sSet Base ndx A B
4 iffalse ¬ B A if B A W W sSet Base ndx A B = W sSet Base ndx A B
5 3 4 sylan9eqr ¬ B A W X A Y R = W sSet Base ndx A B
6 5 3impb ¬ B A W X A Y R = W sSet Base ndx A B