Metamath Proof Explorer


Theorem ressxms

Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ressxms K ∞MetSp A V K 𝑠 A ∞MetSp

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid dist K Base K × Base K = dist K Base K × Base K
3 1 2 xmsxmet K ∞MetSp dist K Base K × Base K ∞Met Base K
4 3 adantr K ∞MetSp A V dist K Base K × Base K ∞Met Base K
5 xmetres dist K Base K × Base K ∞Met Base K dist K Base K × Base K A × A ∞Met Base K A
6 4 5 syl K ∞MetSp A V dist K Base K × Base K A × A ∞Met Base K A
7 resres dist K Base K × Base K A × A = dist K Base K × Base K A × A
8 inxp Base K × Base K A × A = Base K A × Base K A
9 8 reseq2i dist K Base K × Base K A × A = dist K Base K A × Base K A
10 7 9 eqtri dist K Base K × Base K A × A = dist K Base K A × Base K A
11 eqid K 𝑠 A = K 𝑠 A
12 eqid dist K = dist K
13 11 12 ressds A V dist K = dist K 𝑠 A
14 13 adantl K ∞MetSp A V dist K = dist K 𝑠 A
15 incom Base K A = A Base K
16 11 1 ressbas A V A Base K = Base K 𝑠 A
17 16 adantl K ∞MetSp A V A Base K = Base K 𝑠 A
18 15 17 syl5eq K ∞MetSp A V Base K A = Base K 𝑠 A
19 18 sqxpeqd K ∞MetSp A V Base K A × Base K A = Base K 𝑠 A × Base K 𝑠 A
20 14 19 reseq12d K ∞MetSp A V dist K Base K A × Base K A = dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
21 10 20 syl5eq K ∞MetSp A V dist K Base K × Base K A × A = dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
22 18 fveq2d K ∞MetSp A V ∞Met Base K A = ∞Met Base K 𝑠 A
23 6 21 22 3eltr3d K ∞MetSp A V dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A ∞Met Base K 𝑠 A
24 eqid TopOpen K = TopOpen K
25 24 1 2 xmstopn K ∞MetSp TopOpen K = MetOpen dist K Base K × Base K
26 25 adantr K ∞MetSp A V TopOpen K = MetOpen dist K Base K × Base K
27 26 oveq1d K ∞MetSp A V TopOpen K 𝑡 Base K A = MetOpen dist K Base K × Base K 𝑡 Base K A
28 inss1 Base K A Base K
29 xpss12 Base K A Base K Base K A Base K Base K A × Base K A Base K × Base K
30 28 28 29 mp2an Base K A × Base K A Base K × Base K
31 resabs1 Base K A × Base K A Base K × Base K dist K Base K × Base K Base K A × Base K A = dist K Base K A × Base K A
32 30 31 ax-mp dist K Base K × Base K Base K A × Base K A = dist K Base K A × Base K A
33 10 32 eqtr4i dist K Base K × Base K A × A = dist K Base K × Base K Base K A × Base K A
34 eqid MetOpen dist K Base K × Base K = MetOpen dist K Base K × Base K
35 eqid MetOpen dist K Base K × Base K A × A = MetOpen dist K Base K × Base K A × A
36 33 34 35 metrest dist K Base K × Base K ∞Met Base K Base K A Base K MetOpen dist K Base K × Base K 𝑡 Base K A = MetOpen dist K Base K × Base K A × A
37 4 28 36 sylancl K ∞MetSp A V MetOpen dist K Base K × Base K 𝑡 Base K A = MetOpen dist K Base K × Base K A × A
38 27 37 eqtrd K ∞MetSp A V TopOpen K 𝑡 Base K A = MetOpen dist K Base K × Base K A × A
39 xmstps K ∞MetSp K TopSp
40 1 24 tpsuni K TopSp Base K = TopOpen K
41 39 40 syl K ∞MetSp Base K = TopOpen K
42 41 adantr K ∞MetSp A V Base K = TopOpen K
43 42 ineq2d K ∞MetSp A V A Base K = A TopOpen K
44 15 43 syl5eq K ∞MetSp A V Base K A = A TopOpen K
45 44 oveq2d K ∞MetSp A V TopOpen K 𝑡 Base K A = TopOpen K 𝑡 A TopOpen K
46 1 24 istps K TopSp TopOpen K TopOn Base K
47 39 46 sylib K ∞MetSp TopOpen K TopOn Base K
48 eqid TopOpen K = TopOpen K
49 48 restin TopOpen K TopOn Base K A V TopOpen K 𝑡 A = TopOpen K 𝑡 A TopOpen K
50 47 49 sylan K ∞MetSp A V TopOpen K 𝑡 A = TopOpen K 𝑡 A TopOpen K
51 45 50 eqtr4d K ∞MetSp A V TopOpen K 𝑡 Base K A = TopOpen K 𝑡 A
52 21 fveq2d K ∞MetSp A V MetOpen dist K Base K × Base K A × A = MetOpen dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
53 38 51 52 3eqtr3d K ∞MetSp A V TopOpen K 𝑡 A = MetOpen dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
54 11 24 resstopn TopOpen K 𝑡 A = TopOpen K 𝑠 A
55 eqid Base K 𝑠 A = Base K 𝑠 A
56 eqid dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A = dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
57 54 55 56 isxms2 K 𝑠 A ∞MetSp dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A ∞Met Base K 𝑠 A TopOpen K 𝑡 A = MetOpen dist K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
58 23 53 57 sylanbrc K ∞MetSp A V K 𝑠 A ∞MetSp