Metamath Proof Explorer


Theorem restabs

Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restabs J V S T T W J 𝑡 T 𝑡 S = J 𝑡 S

Proof

Step Hyp Ref Expression
1 simp1 J V S T T W J V
2 simp3 J V S T T W T W
3 ssexg S T T W S V
4 3 3adant1 J V S T T W S V
5 restco J V T W S V J 𝑡 T 𝑡 S = J 𝑡 T S
6 1 2 4 5 syl3anc J V S T T W J 𝑡 T 𝑡 S = J 𝑡 T S
7 simp2 J V S T T W S T
8 sseqin2 S T T S = S
9 7 8 sylib J V S T T W T S = S
10 9 oveq2d J V S T T W J 𝑡 T S = J 𝑡 S
11 6 10 eqtrd J V S T T W J 𝑡 T 𝑡 S = J 𝑡 S