| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcld.1 |
|
| 2 |
|
id |
|
| 3 |
1
|
topopn |
|
| 4 |
|
ssexg |
|
| 5 |
2 3 4
|
syl2anr |
|
| 6 |
|
resttop |
|
| 7 |
5 6
|
syldan |
|
| 8 |
|
eqid |
|
| 9 |
8
|
iscld |
|
| 10 |
7 9
|
syl |
|
| 11 |
1
|
restuni |
|
| 12 |
11
|
sseq2d |
|
| 13 |
11
|
difeq1d |
|
| 14 |
13
|
eleq1d |
|
| 15 |
12 14
|
anbi12d |
|
| 16 |
|
elrest |
|
| 17 |
5 16
|
syldan |
|
| 18 |
17
|
anbi2d |
|
| 19 |
1
|
opncld |
|
| 20 |
19
|
ad5ant14 |
|
| 21 |
|
incom |
|
| 22 |
|
dfss2 |
|
| 23 |
22
|
biimpi |
|
| 24 |
21 23
|
eqtrid |
|
| 25 |
24
|
ad4antlr |
|
| 26 |
25
|
difeq1d |
|
| 27 |
|
difeq2 |
|
| 28 |
|
difindi |
|
| 29 |
|
difid |
|
| 30 |
29
|
uneq2i |
|
| 31 |
|
un0 |
|
| 32 |
28 30 31
|
3eqtri |
|
| 33 |
27 32
|
eqtrdi |
|
| 34 |
33
|
adantl |
|
| 35 |
|
dfss4 |
|
| 36 |
35
|
biimpi |
|
| 37 |
36
|
ad3antlr |
|
| 38 |
26 34 37
|
3eqtr2rd |
|
| 39 |
21
|
difeq1i |
|
| 40 |
|
indif2 |
|
| 41 |
|
incom |
|
| 42 |
39 40 41
|
3eqtr2i |
|
| 43 |
38 42
|
eqtrdi |
|
| 44 |
|
ineq1 |
|
| 45 |
44
|
rspceeqv |
|
| 46 |
20 43 45
|
syl2anc |
|
| 47 |
46
|
rexlimdva2 |
|
| 48 |
47
|
expimpd |
|
| 49 |
18 48
|
sylbid |
|
| 50 |
|
difindi |
|
| 51 |
29
|
uneq2i |
|
| 52 |
|
un0 |
|
| 53 |
50 51 52
|
3eqtri |
|
| 54 |
|
difin2 |
|
| 55 |
54
|
adantl |
|
| 56 |
53 55
|
eqtrid |
|
| 57 |
56
|
adantr |
|
| 58 |
|
simpll |
|
| 59 |
5
|
adantr |
|
| 60 |
1
|
cldopn |
|
| 61 |
60
|
adantl |
|
| 62 |
|
elrestr |
|
| 63 |
58 59 61 62
|
syl3anc |
|
| 64 |
57 63
|
eqeltrd |
|
| 65 |
|
inss2 |
|
| 66 |
64 65
|
jctil |
|
| 67 |
|
sseq1 |
|
| 68 |
|
difeq2 |
|
| 69 |
68
|
eleq1d |
|
| 70 |
67 69
|
anbi12d |
|
| 71 |
66 70
|
syl5ibrcom |
|
| 72 |
71
|
rexlimdva |
|
| 73 |
49 72
|
impbid |
|
| 74 |
10 15 73
|
3bitr2d |
|