Metamath Proof Explorer


Theorem restcldi

Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis restcldi.1 X = J
Assertion restcldi A X B Clsd J B A B Clsd J 𝑡 A

Proof

Step Hyp Ref Expression
1 restcldi.1 X = J
2 simp2 A X B Clsd J B A B Clsd J
3 dfss B A B = B A
4 3 biimpi B A B = B A
5 4 3ad2ant3 A X B Clsd J B A B = B A
6 ineq1 v = B v A = B A
7 6 rspceeqv B Clsd J B = B A v Clsd J B = v A
8 2 5 7 syl2anc A X B Clsd J B A v Clsd J B = v A
9 cldrcl B Clsd J J Top
10 9 3ad2ant2 A X B Clsd J B A J Top
11 simp1 A X B Clsd J B A A X
12 1 restcld J Top A X B Clsd J 𝑡 A v Clsd J B = v A
13 10 11 12 syl2anc A X B Clsd J B A B Clsd J 𝑡 A v Clsd J B = v A
14 8 13 mpbird A X B Clsd J B A B Clsd J 𝑡 A