Metamath Proof Explorer


Theorem restcldr

Description: A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion restcldr A Clsd J B Clsd J 𝑡 A B Clsd J

Proof

Step Hyp Ref Expression
1 cldrcl A Clsd J J Top
2 eqid J = J
3 2 cldss A Clsd J A J
4 2 restcld J Top A J B Clsd J 𝑡 A v Clsd J B = v A
5 1 3 4 syl2anc A Clsd J B Clsd J 𝑡 A v Clsd J B = v A
6 incld v Clsd J A Clsd J v A Clsd J
7 6 ancoms A Clsd J v Clsd J v A Clsd J
8 eleq1 B = v A B Clsd J v A Clsd J
9 7 8 syl5ibrcom A Clsd J v Clsd J B = v A B Clsd J
10 9 rexlimdva A Clsd J v Clsd J B = v A B Clsd J
11 5 10 sylbid A Clsd J B Clsd J 𝑡 A B Clsd J
12 11 imp A Clsd J B Clsd J 𝑡 A B Clsd J