Step |
Hyp |
Ref |
Expression |
1 |
|
restcls.1 |
|
2 |
|
restcls.2 |
|
3 |
|
simp1 |
|
4 |
|
sstr |
|
5 |
4
|
ancoms |
|
6 |
5
|
3adant1 |
|
7 |
1
|
clscld |
|
8 |
3 6 7
|
syl2anc |
|
9 |
|
eqid |
|
10 |
|
ineq1 |
|
11 |
10
|
rspceeqv |
|
12 |
8 9 11
|
sylancl |
|
13 |
2
|
fveq2i |
|
14 |
13
|
eleq2i |
|
15 |
1
|
restcld |
|
16 |
15
|
3adant3 |
|
17 |
14 16
|
syl5bb |
|
18 |
12 17
|
mpbird |
|
19 |
1
|
sscls |
|
20 |
3 6 19
|
syl2anc |
|
21 |
|
simp3 |
|
22 |
20 21
|
ssind |
|
23 |
|
eqid |
|
24 |
23
|
clsss2 |
|
25 |
18 22 24
|
syl2anc |
|
26 |
2
|
fveq2i |
|
27 |
26
|
fveq1i |
|
28 |
|
id |
|
29 |
1
|
topopn |
|
30 |
|
ssexg |
|
31 |
28 29 30
|
syl2anr |
|
32 |
|
resttop |
|
33 |
31 32
|
syldan |
|
34 |
33
|
3adant3 |
|
35 |
1
|
restuni |
|
36 |
35
|
3adant3 |
|
37 |
21 36
|
sseqtrd |
|
38 |
|
eqid |
|
39 |
38
|
clscld |
|
40 |
34 37 39
|
syl2anc |
|
41 |
27 40
|
eqeltrid |
|
42 |
1
|
restcld |
|
43 |
42
|
3adant3 |
|
44 |
41 43
|
mpbid |
|
45 |
2 33
|
eqeltrid |
|
46 |
45
|
3adant3 |
|
47 |
2
|
unieqi |
|
48 |
47
|
eqcomi |
|
49 |
48
|
sscls |
|
50 |
46 37 49
|
syl2anc |
|
51 |
50
|
adantr |
|
52 |
|
inss1 |
|
53 |
|
sseq1 |
|
54 |
52 53
|
mpbiri |
|
55 |
54
|
ad2antll |
|
56 |
51 55
|
sstrd |
|
57 |
1
|
clsss2 |
|
58 |
57
|
adantl |
|
59 |
58
|
ssrind |
|
60 |
|
sseq2 |
|
61 |
59 60
|
syl5ibrcom |
|
62 |
61
|
expr |
|
63 |
62
|
com23 |
|
64 |
63
|
impr |
|
65 |
56 64
|
mpd |
|
66 |
44 65
|
rexlimddv |
|
67 |
25 66
|
eqssd |
|