Metamath Proof Explorer


Theorem restco

Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restco J V A W B X J 𝑡 A 𝑡 B = J 𝑡 A B

Proof

Step Hyp Ref Expression
1 vex y V
2 1 inex1 y A V
3 ineq1 x = y A x B = y A B
4 inass y A B = y A B
5 3 4 eqtrdi x = y A x B = y A B
6 2 5 abrexco z | x w | y J w = y A z = x B = z | y J z = y A B
7 eqid y J y A = y J y A
8 7 rnmpt ran y J y A = w | y J w = y A
9 8 mpteq1i x ran y J y A x B = x w | y J w = y A x B
10 9 rnmpt ran x ran y J y A x B = z | x w | y J w = y A z = x B
11 eqid y J y A B = y J y A B
12 11 rnmpt ran y J y A B = z | y J z = y A B
13 6 10 12 3eqtr4i ran x ran y J y A x B = ran y J y A B
14 restval J V A W J 𝑡 A = ran y J y A
15 14 3adant3 J V A W B X J 𝑡 A = ran y J y A
16 15 oveq1d J V A W B X J 𝑡 A 𝑡 B = ran y J y A 𝑡 B
17 ovex J 𝑡 A V
18 15 17 eqeltrrdi J V A W B X ran y J y A V
19 simp3 J V A W B X B X
20 restval ran y J y A V B X ran y J y A 𝑡 B = ran x ran y J y A x B
21 18 19 20 syl2anc J V A W B X ran y J y A 𝑡 B = ran x ran y J y A x B
22 16 21 eqtrd J V A W B X J 𝑡 A 𝑡 B = ran x ran y J y A x B
23 simp1 J V A W B X J V
24 inex1g A W A B V
25 24 3ad2ant2 J V A W B X A B V
26 restval J V A B V J 𝑡 A B = ran y J y A B
27 23 25 26 syl2anc J V A W B X J 𝑡 A B = ran y J y A B
28 13 22 27 3eqtr4a J V A W B X J 𝑡 A 𝑡 B = J 𝑡 A B